All BGRI Abstracts

Displaying 61 - 70 of 417 records | 7 of 42 pages

Isolation of durable wheat stem rust resistance gene Sr26 and enhancement of its deployment

BGRI 2018 Poster Abstract
Jianping Zhang CSIRO Agriculture and Food, Australia
Timothy,Hewitt, Peng, Zhang, Zacharias A., Pretorius, Narayana, Upadhyaya, Rohit, Mago, Sambasivam, Periyannan, Xiuying, Kong, Burkhard, Steuernagel, Brande H., Wulff, Evans S., Lagudah, , , , , , , , , ,

Multiple rust resistance gene combinations are considered as a practical solution for providing durable rust resistance and preventing resistance breakdown arising from single gene deployment. The stem rust resistance locus Sr26, originally derived from Thinopyrum ponticum and introgressed into wheat as a chromosome translocation, is one of the very few genes conferring durable resistance for almost 40 years to all known races of stem rust, including the highly virulent stem rust race Ug99 (TTKSK) and its derivatives (Dundas et al. 2015).

To understand the underlying mechanisms of its unusual long-term effectiveness and to explore allelic diversity in different Th. ponticum accessions for other functional alleles that may offer new sources of resistance, we used comparative genomics and gene capture techniques (Resistance gene enrichment sequencing, RenSeq) as complementary strategies for isolating the target gene (Steuernage et al. 2016). Sr26 region was first mapped using NB-LRR (Nucleotide-binding site and leucine-rich repeat) sequences from the orthologous gene members located on the long arm of chromosome 6D from Aegilops tauschii (the D-genome donor of wheat) reference genome. Subsequently, we revealed a cluster of NB-LRR sequences located at the distal end of the Th. ponticum introgression segment that were absent in the smallest interstitial Sr26 deletion mutant. Therefore, we substantially narrowed down the genetic interval for Sr26. In addition to this approach, we subjected the mutant population to RenSeq pipeline. A candidate gene of Sr26 has been successfully identified to be a NBS-LRR type resistance gene. Validation of the gene candidate by complementation studies is currently in progress.

In order to enhance durable resistance, genetic stocks of Sr26 from different backgrounds as well as a panel of Sr26-APR (Adult Plant Resistance) gene combinations have been generated to further investigate the resistance response of Sr26 in combination with different multi-pathogen APR genes.


Breeding for stripe rust resistance in spring wheat germplasm adapted to Khyber Pakhtunkhwa province of Pakistan

BGRI 2018 Poster Abstract
Fahim Ullah Khan Barani Agricultural Research Station, Kohat
Fida,Mohammad, Muhammad, Imtiaz, , , , , , , , , , , , , , , , , , , , , , , , , ,

Stripe rust is one of the major limiting factors in wheat production. An objective-based breeding program was initiated at Barani Agricultural Research Station (BARS), Kohat in 2013/14 to transfer APR genes from CIMMYT and ICARDA spring wheat lines into wheat germplasm well adapted in Khyber Pakhtunkhwa (KPK). Nine high yielding but stripe rust susceptible KPK wheat varieties were crossed in various combination with 17 CIMMYT and ICARDA wheat lines carrying resistance genes. The resultant 79 F1s were backcrossed with respective susceptible parents followed by single plant selection in F2 generation. During 2015/16, 367 segregating populations/lines were screened in multi-environment stripe rust tests within Khyber Pakhtunkhwa. Sixty-nine out of 367 lines showing adequate resistance were again screened for strip rust resistance at hot spot and in yield trial at BARS, Kohat during 2016/17. Seventeen lines showed considerable resistance and were higher yielding than check cultivars. Lines exhibiting adequate resistance will be further tested in advanced yield trial at provincial and national level for possible release of new varieties in wheat.


Large scale wheat stem rust outbreaks in Western Siberia / Northern Kazakhstan in 2015-2017

BGRI 2018 Poster Abstract
Vladimir Shamanin Omsk State Agricultural University, Omsk, Russia
Elena,Salina, Yuriy, Zelenskiy, Alma, Kokhmetova, Mehran, Patpour, Mogens, Hovm?ller, Pablo, Olivera, Les, Szabo, Yue, Jin, Marcel, Meyer, Chris, Gilligan, Matthew, Hort, Dave, Hodson, Alexey, Morgunov, , , ,

Short season, high latitude spring wheat is grown on 7 million ha in Western Siberia and 10 million ha in Northern Kazakhstan. Despite relatively low wheat yields (1.5 t/ha), the region is extremely important for regional and global food security. Leaf rust dominates, occurring three years out of five, especially in favorable years with higher rainfall. Since 2010, stem rust has been observed at an increasing number of sites. The first large-scale stem rust outbreak occurred in 2015 and affected about 0.5-1 million ha in Omsk, Western Siberia. In 2016, 2 million ha were affected in the Omsk and Altay regions, while 1 million ha in the Kostanay and Northern Kazakhstan regions were affected in 2017. Estimated yield losses reached 25-35% each year. Factors associated with the outbreaks included: higher rainfall in late June and July; cultivation of susceptible varieties; and an increased area planted to winter wheat, which serves as a source of inoculum. Sampling and race analysis revealed a diverse pathogen population, indicative of a sexual recombination. A total of 51 races were identified from 31 samples taken in 2015 and 2016. All races were avirulent on Sr31. The majority of varieties released and cultivated in the region are susceptible to stem rust and require replacing. A recent study of 150 local resistant varieties and breeding lines indicated that the genetic basis of resistance was limited to Sr25, Sr31, Sr36, Sr6Ai, Sr6Ai#2, and additional unknown major genes. Adult-plant resistance to stem rust was observed in less than 20% of the germplasm. The potential impact of these large stem rust outbreaks on other wheat growing regions is being investigated by analyzing spore wind dispersal patterns. Further research is required to understand and mitigate the sudden appearance of stem rust as a disease of economic importance.
Study at Omsk State Agrarian University was supported by the Russian Science Foundation (project No. 16-16-10005).


Wheat disease surveillance and monitoring in Bangladesh

BGRI 2018 Poster Abstract
Md Farhad Wheat Research Centre, Bangladesh Agricultural Research Institute
Kishwar-E-,Mustarin, Md Mostofa Ali, Reza, Krishna Kanto, Roy, Md. Ashraful, Alam, Md. Rezaul, Kabir, MD Abdil, Hakim, Md Monwar, Hossain, Md Rabiul, Islam, Tim, Krupnik, Md Forhad, Amin, Md. Mosharraf, Hossain, Nure Alam, Siddque, Paritosh Kumar, Malaker, Maricellis, Acevedo, Noresh Chandra Deb, Barma

Disease surveillance and monitoring has been regularly organized by Wheat Research Centre (WRC), in major wheat growing areas of Bangladesh since 2010-11 to track the current status of common diseases, first outbreak of new disease(s), the pathogen hotspot and identify new virulent races. Besides the paper based traditional survey, scientists of WRC are now using different tools like Smartphone/Tablet with supporting applications. Several trainings were arranged under DGGW project on rust tool box in Bangladesh. Among all smartphone applications, RustSurvey is the easiest and handy application which integrates with the SAARC Surveillance Toolbox.
A disease surveillance program on wheat blast was organized in Mid February 2017 followed by hands on training in collaboration with CIMMYT and CU, USA. Out of 103 sites surveyed, 33 sites were found infected with wheat blast. Overall disease incidence was comparatively lower than the previous season with low disease severity (5-10%). Surveillance program on rust diseases was also conducted in early March 2016. Among 102 rust survey sites stem rust and yellow rust was not found, but leaf rust occurred with varying levels of severity depending on field locations, sowing times and cultivars grown. About 52% of the 102 fields investigated had leaf rust, and almost 73% of the infected fields showed low (<20%), 21% moderate (20-40%) and only 6% showed high (more than 40%) disease severity. Timely (15-30 November) planted crops largely escaped or had less disease compared to those planted late in the season. The predominant cultivar Prodip as well as BARI Gom 25 and 26 showed zero to high disease levels with MSS type reactions. BARI Gom 21, 28, 29 and 30 were free from leaf rust infection. Furthermore, Spot blotch was found in most of the region with low to high level field incidence depending on crop growth stage.


How to adapt durum wheat when the environment tries everything to kill it

BGRI 2018 Poster Abstract
Filippo Maria Bassi ICARDA, Rabat
Khaoula,El Hassouni, Priyanka, Gupta, Hafssa, Kabbaj, Meryam, Zaim, Amadou Tidiane, Sall, Bouchra, Belkadi, Ayed, Al-Abdallat, Ahmed, Amri, Rodomiro, Ortiz, Michael, Baum, , , , , , , , , ,

Durum wheat is the tenth most important crop in the world, but its cultivation is mostly limited to harsh, arid, and heat prone marginal lands. Breeding for tolerance to these conditions is often considered the most strategic approach to ensure adaptation, especially when paired with best agronomical practices. The word 'adaptation' summarizes all the research efforts conducted to identify the many traits controlling the mechanisms for withstanding or escaping the traceries of the environment. It can be summarized as "GGE vs E". The durum wheat breeding program of ICARDA deploys targeted phenotyping methods in combination with genomic scans to dissect these 'adaptive' traits into simple loci. These loci can then be pyramided via a combination of international field testing, markers assisted selection, genetically-driven crossing schemes, and genomic selection to derive climate-ready cultivars. Here, several examples of this approach are presented and their implications for 'adaptation' are discussed.


Deciphering the molecular factors essential for Lr34-mediated resistance in wheat

BGRI 2018 Poster Abstract
Dharmendra Singh University of Queensland, St. Lucia
Adnan,Riaz, Jonathan, Powell, Timothy, Fitzgerald, Kemal, Kazan, Neena, Mitter, Evans, Lagudah, Lee T, Hickey, , , , , , , , , , , , , , , ,

The Lr34/Yr18/Sr57/Pm38/Ltn1 multi-resistance locus has been deployed and remained effective in wheat cultivars for more than 100 years. The durability and pleiotropic nature makes Lr34 a unique and highly valuable resource for rust resistance breeding. Despite its functional annotation as an ABC transporter, the mode of action is unknown. Considering this, we aimed to decipher molecular factors and signaling components essential for Lr34 function using RNA-seq of Chara resistant (Lr34) and Chara mutant (heavy ion irradiation, HII) susceptible wheat lines. Screening of Chara and Chara HII lines with Lr34-specific markers confirmed the integrity of Lr34 in both lines; however, phenotyping confirmed rust and powdery mildew susceptibility in the Chara HII lines. Plants were grown under controlled conditions and infected with Puccinia triticina pathotype 76-1,3,5,7,9,10,12,13+Lr37 at the flag leaf stage. Flag leaves were sampled at 0, 24, 48, 72, 96 and 168 hours post inoculation (hpi) from mock and infected plants. Based on real-time PCR analysis of basal defense genes and the Lr34 gene, we selected 72 hpi for RNA-seq with four biological replicates per condition. The samples were sequenced on an Illumina Hiseq 4000 at the Beijing Genomics Institute, China. A total of 9.0 Gb of sequence (2.25 Gb/library) from 16 libraries for four conditions was obtained. Differential expression analysis was performed using the Tuxedo analysis pipeline with standard parameters. Analysis revealed deletion of DNA fragments with collinear gene order on chromosomes 1A, 2D, 5A, 5B, 5D and 7D of Chara HII mutants. To determine the significance of the deletions we performed bulk segregant analyses on segregating F2 populations of Chara ? Chara HII crosses. Analyses revealed key genomic regions associated with Lr34-functional resistance and we are in the process of validating candidate genes using qPCR.


SSR Analysis of Puccinia graminis f. sp tritici populations in Kenya from samples collected in 2015

BGRI 2018 Poster Abstract
Edgar Okello University of Eldoret
Julius,Ochuodho, Ruth, Wanyera, Sridhar, Bhavani, Les, Szabo, , , , , , , , , , , , , , , , , , , , , ,

Stem rust Ug99 and related race group are one of the major constraints of wheat production in Kenya. The challenge has been largely due to rapid evolution of races within lineage defeating resistance genes resulting in boom and burst cycles. Understanding of the pathogen population structure in major wheat growing regions in Kenya gives comprehensive information of the predominant races as well as capturing new races which may have potential of causing epidemics. Such information can have significant impact on effective gene stewardship in breeding resistant varieties. Using 11 Pgt Simple Sequence Repeats (SSR) markers we analyzed 104 single uredinial-pustule samples. Allele frequency distribution ranged from 2 to 6 per locus with an average of 3.27 per locus. Observed heterozygosity ranging from 0.297-1.000 (mean HO=?0.809) was significantly different (P< 0.001) than the expected heterozygosity (0.264 to 0.507; mean HE=?0.407) indicating that the population is asexual. Analysis of molecular variance (AMOVA) showed that the majority of the variation occurred within the samples (98%) rather than between regions (2%). Analysis of 104 samples identified 21 multiple locus genotypes (MLGs). MLG.19 was observed across the three region analyzed that is Central Rift, North Rift and Mount Kenya while MLG.18 was predominant in Mount Kenya. Based on SSR genotypes of reference isolates, Pgt clade IV (race TKTTF) was associated with MLG.16 in Central Rift Kenya while clade I (race TTKSK) had a unique MLG.10. These results indicated two main groups corresponding to Clade I (Ug99 race group) and Clade IV (race TKTTF race group). This minimum spanning network analysis pattern points to the Pgt population being asexual due to mutation. These preliminary results suggest that Pgt population in Kenya is asexual in nature. Further analysis is being conducted to ascertain geographical structure as well as compare the results with the 2011 data.


A systematic genetic and genomics approach to achieve durable rust resistances in wheat

BGRI 2018 Poster Abstract
Wentao Zhang National Research Council of Canada (NRC)-Saskatoon
Kerry,Boyle, Tammy, Francis, Peng, Gao, Brittany, Polley, Christine, Sidebottom, Brent, McCallum, Harpinder, Randhawa, Tom, Fetch, Randy, Kutcher, Sylvie, Cloutier, Pierre R, Fobert, , , , , , , ,

Most rust resistant genes in wheat are race-specific (R), with relatively few genes conferring resistance only at the adult stage that have been described as slow rusting genes (APR). Pyramiding multiple R, APR or APR+R genes has been used successfully over many years to achieve durable rust resistance. To further enhance this strategy, a genetic genomics approach was exploited to identify genes with different resistant mechanisms and the most effective gene pyramids.
Several new combinations of rust genes were created and tested in the Thatcher background, revealing synergistic ("booster") effects involving Lr21 with Lr16. With QTL mapping approach, we found that genes combined from 7D, 1B and 7B conferred an almost immune response to leaf rust, while genes from 7D, 1B and 3B provided an almost immune response to stripe rust. With a genomics approach, a large scale transcriptome analysis was conducted on key rust resistant genes including six R genes, three APR genes and one gene pyramid with Lr34+Lr16 over a time series during the infection process of both seedlings and adult plants. Detailed transcriptome analysis of gene expression associated with different major and minor leaf rust genes, alone or in combination, identified common and unique aspects of defense responses. For example, Lr9 is different from the other three leaf rust genes tested, with resistance triggered at a very early stage, consistent with pre-haustorial resistance. R genes Lr21 and Lr16 were also significantly different compared to other R and APR genes. With gene co-expression network analysis, a shared unique gene module mediated by Lr34 and Lr67 was also identified. This large transcriptome dataset also allowed the development of a rust-wheat interactome atlas for rust functional genomics research in wheat.


Business mentoring contributes to the growth of small and wheat seed enterprises in Nepal

BGRI 2018 Poster Abstract
Narayan Khanal CIMMYT International, South Asia, Regional Office, Kathmandu
Gurbinder,Gill, Madan, Bhatta, Andrew, McDonald, Arun, Joshi, , , , , , , , , , , , , , , , , , , , , ,

The experience of seed system development works in Nepal shows that lack of business orientation is one of the key challenges for the growth of Nepalese seed enterprises (SEs). We implemented a business mentorship activity focusing on SEs in the project - Cereal System Initiative for South Asia. The business mentoring (BM) was implemented covering 10 SEs during 2014 to 2017 using discovery sensitization and facilitation mode. The key actions were, SWOT analysis, mentorship to develop strategic business plan, technical facilitation for seed quality improvement through maintenance breeding and on-farm farmer participatory trials as well as large plot demonstrations of recently released and pre-released wheat varieties. This resulted in 45% average increase in the volume of seed sold by individual SEs in three years. Five SEs started maintenance breeding in wheat and by third year, over 50% of the seed sold by the enterprises consisted of newly released varieties compared to 20% before mentoring. The improved performance of SEs prompted seed quality control authority of Nepal to issue a license to two of these private seed companies for maintenance breeding cum foundation seed production. As a consequence, foundation seed production of these entities increased by 60% in three years, and two of them have also started maintenance breeding in rice from 2017. The facilitation in developing business plan by SEs helped them to attract financial resources from different sources in upgrading seed processing, storage and laboratory facilities. Moreover, the National Wheat Research Program of Nepal has proposed the release of a new wheat variety BL 4341 through integration of on-farm trials and seed production data of these SEs. This new variety is resistant to major diseases, yields 7% higher than the popular cultivar NL 297 which was released 32 years ago and needed replacement due to susceptibility to wheat rusts


Suitability of planting time to get iron and zinc enriched wheat varieties

BGRI 2018 Poster Abstract
Sadaf Shamim Cereal Laboratory, Wheat Research Institute, Faisalabad, Punjab, Pakistan
Hira,Shair, Anjum, Javed, Muhammad, Abdullah, Makhdoom, Hussain, Javed, Ahmed, , , , , , , , , , , , , , , , , , , ,

Globally, more than two billion people are undernourished in the world and deficient in key vitamins and minerals, making it the world's greatest health risk factor. Among these, iron and zinc are of greater significance from human nutrition perspective, ranking them 5th and 6th in developing countries. The population most vulnerable to these micronutrient deficiencies is women and children. Iron deficiency results about 1.62 billion people as anemic, largely preschool children (47%). It is responsible for approximately 20854 deaths and two million disability adjusted life years (DALYs) among children under five years old, whereas, zinc deficiency is responsible for approximately 4% of deaths and 16 million DALYs, among children under age five. This leads to malnutrition ultimately leading to a disabled society.
Widespread accessibility of these nutrients is the solution to cater malnutrition. Wheat, the "staff of life," consumed by masses can help eradicate "hidden hunger." For this, fortification and bio-fortification are highly talked about, but one having limitations in reaching the masses and other a long term intervention, respectively, suitability of planting times to screen out varieties high in zinc and iron, is an on-field solution. In a study, wheat varieties; Punjab-11, Millat-11 and Galaxy-13 were selected from three planting times, with an interval of one month. Results reveal varieties exhibited their natural genotypic response but planting time impact on Zn and Fe were visibly significant. 30th December gave higher contents of Fe and Zn as compared to previous planting dates of the same year. Iron on an overall basis ranged from (135.0-147.0) ppm, while Zinc gave a confined range of (30.2-33.2) ppm. Thus, concluded that comparatively delayed sowing favours the mineral content concentration in wheat grains. And these creamed out varieties can readily be used in crosses with high yielding varieties, in order to make our wheat mineral sufficient.