All BGRI Abstracts

Displaying 21 - 30 of 415 records | 3 of 42 pages

Enrichment of Indian wheat germplasm with stripe rust resistant genes

BGRI 2018 Poster Abstract
Ravish Chatrath ICAR-Indian Institute of Wheat and Barley Research, Karnal
Satish Kumar, Ratan Tiwari, Gyanendra Pratap Singh

Stripe rust, is a major constraint to wheat production in the more than 12.8 m ha region of the Northern Hills and North Western Plains zones in India. The previously deployed resistance genes Yr9 and Yr27 are no longer effective. New sources of resistance (Yr5, Yr10, Yr15, Yr24) became available under the umbrella of an Indo-Australian collaborative project. A set of advanced backcross derivative lines out yielded the checks in preliminary evaluations and were promoted to station-level (16 lines) and national (5 lines) trials. A new cohort of resistance genes (Yr47, Yr51, Yr57) are now available and are being used in the breeding program. Resistance genes Yr17, Yr18, Yr31, Yr36, Yr40, Yr53, YrC591, and Yr70 are also being used. The recent progress in development of high yielding, stripe rust resistant lines will help to address future threats from stripe rust.

Tags:

Stripe rust virulence in western Canada

BGRI 2018 Poster Abstract
Harpinder Randhawa Agriculture and Agri-Food Canada, Lethbridge, Alberta
Gurcharn Brar, Randy Kutcher, Raman Dhariwal

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in western Canada. Although stripe rust was an issue in southern Alberta for many years, it became important in other parts of the country after a dramatic population shift in 2000, resulting from an invasive race. Sporadic epidemics of the disease are common and cause considerable loss, due to which, an intermediate level of resistance to stripe rust was required for new varietal registrations beginning 2017. Virulence surveys are of key importance in germplasm and cultivar development as they provide breeders and pathologists the information needed to better understand host-pathogen interactions and the effectiveness of Yr genes. Virulence characterization revealed a wide range of virulence phenotypes exhibited by 33 Pst races in western Canada, although only 2-3 races were predominant. The expression of Yr genes may differ between controlled conditions and natural field conditions as previously reported. Thus, stripe rust differentials and wheat cultivars grown in western Canada are also screened at multiple locations in every year. At present, all stage resistance genes Yr1, Yr4, Yr5, Yr15, Yr76, and YrSP are effective against the predominant Pst races, whereas at the adult stage under field conditions, Yr2, Yr17, Yr28, or those carried by Yamhill are also effective. Seedling resistance genes Yr7, Yr10, Yr17, or Yr27 were the most common in Canadian wheat cultivars. Of these, only Yr17 is effective under field conditions. Adult plant resistance genes Yr18 and Yr29 are carried by many cultivars, but are not effective under high disease pressure. The effectiveness of each resistance gene may vary between the eastern and western prairies of western Canada due to differences in virulence. Regular virulence surveys using contemporary and regional cultivars facilitate the development of rust resistant cultivars.

Tags:

Combining ability estimation for yield and yield related traits in Triticum aestivum

BGRI 2018 Poster Abstract
Nusrat Parveen Vegetable Research Institute AARI, Faisalabad, Pakistan.
Etlas,Amin, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

In the present study five bread wheat genotypes (9797, 9801, 9802, Chakwal-50 and Chakwal-86) were tested in a 5?5 full diallel analysis for the estimation of combining ability for yield and its related traits. In randomized complete block design (RCBD) twenty F1s along with their parents were planted in field with three replications in the research area of Department of Plant Breeding and Genetics, University of Agriculture, during 2014-15. Plant height, No. of grains/spike, spike length, No. of productive tillers/plant, flag leaf area, No. of spikelets/spike, 1000 grain weight and grain yield per plant were studied. Except spike length mean squares due to GCA were highly significant for all the traits. All the characters showed highly significant mean squares for SCA and RCA. SCA variance was lower than GCA variance for number of grains/spike and spike length presenting the major role of additive gene action in the inheritance of these traits. While for plant height, flag leaf area, number of spikelets/spike, number of fertile tillers/plant, 1000 grain weight and grain yield/plant the value of GCA variance was lower than the value of SCA variance exhibiting non-additive gene action. Chakwal-50 was the best general combiner for plant height, spike length, number of spikelets/spike, number of grains/spike and grain yield/plant. The best specific combination for most of the traits was 9802?Chakwal-86. In future wheat breeding research programmes, good specific and general combiners can be exploited.

Tags:

Towards delivery of suitably high yielding, stable, and rust resistant wheat genotypes in the stem rust hotspots of Kenya

BGRI 2018 Poster Abstract
Godwin Macharia Kenya Agricultural and Livestock Research Organization
Ruth Wanyera, Bernard Otukho, Bernice Waweru, Hellen Wairimu, Sridhar Bhavani

Emergence of Pgt race Ug99 and rapid proliferation of lineal highly virulent races imminently threaten Kenyan wheat. Devastating epidemics have led to huge losses among smallholder farmers who invariably are unable to spray appropriately and in situations where susceptible varieties are grown. To combat stem rust, the Kenya wheat improvement program seeks to release high yielding stable genotypes with suitable levels of disease resistance. Moreover, detection of genotypes that are adapted to rain-fed environments is an overarching objective. Six hundred and seventeen genotypes from various CIMMYT nurseries (PCBW, EPCBW, PCHPLUS, and 9th SRRSN) were selected based on plant type and reaction to stem rust at Njoro. The reconstituted nursery-KSRON, was sown in the main season of 2016 at Njoro and Timau for further evaluation. Forty red grained lines depicting R-MR infection types, severity of 30% or less, and average Thousand Kernel Weight of >40g were then selected to constitute a yield trial. At each of eight diverse environments, trials also comprising four commercial varieties as checks, were designed in RCBD, three replicates laid out in contiguous array of 8 rows x 10 m plots. Genotype (G), Environment (E) and GE interactions effects were estimated by fitting the AMMI model to yield data, supported by a biplot visualization of the results. Analysis revealed significant (P ?0.01) genotype (G), environment (E), and GE interactions. The first three principal components (PC) explained ~78% of the observed variation. Environment was the predominant source contributing over 85% to total sum of squares. The biplot pointed to at least four environments that were highly correlated. By classifying genotypes based on Shukla's stability variance and Kang's stability rating, six genotypes (R1402, R1411, R1424, R1481, R1484, and R1486) were deemed high yielding and stable, and thus suitable candidates for further testing through the release pipeline.

Tags:

Introgression of Sr50 and SrWeb genes in hexaploid wheat using molecular markers for enhancing stem rust resistance

BGRI 2018 Poster Abstract
Punam Singh Yadav Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
Vinod Kumar Mishra, Uttam Kumar, Ramesh Chand, Akhilesh Mishra, Arun Joshi

Ug99 is a devastating race of Puccinia graminis f.sp. tritici possessing virulence against resistant genes Sr31 and Sr24. This race is highly adoptive and has spread quite rapidly with 13 known variants covering 13 different countries. For reducing the vulnerability of wheat in south Asia to the Ug99, breeding durable resistant varieties is important. India, second largest wheat producer, falls in the predicted pathway of Ug99. Most of the Indian germplasm possesses Sr31 and Sr24 in their background. HUW468, a well adopted variety of north eastern plains zone (NEPZ) of India, carries durable resistance gene Sr2. To strengthen it, a MABB program was initiated to introgressed two major genes (Sr50 and SrWeb) using a donor line PMBWIR4 from CIMMYT. The foreground selection was performed with Xgwm47 for SrWeb and IB267 for Sr50 followed by the background selection by using 128 polymorphic SSR markers covering all chromosomes. Backcross progenies of HUW468 were screened in the field condition by using of Pgt race 21A-2 at IARI, Regional Station, Indore located in the central India. Superior selected lines from BC2F4:5 generation was planted at three locations in India namely; Varanasi, Indore and Dharwad. HUW468-09-25-47-09 and HUW468-09-25-47-56 were selected from BC2F5 generation having Sr50 and SrWeb along with Sr2 gene, superior agronomic performance and with 93.5% and 92.7% genome recovery, respectively. These two lines also possess 6-10 % yield superiority over the recipient parent HUW468. These lines have been submitted for registration in NBPGR (National Bureau of Plant Genetic Resources), India.

Tags:

Paving the path of durum: Identification of flowering genes and heterotic behavior for root vigor

BGRI 2018 Poster Abstract
Priyanka Gupta University of Bologna, Italy/ International Center for Agricultural Research in the Dry Areas, Morocco
Hafssa Kabbaj, khaoula El hassouni, Elisabetta Frascaroli, Angelo Petrozza, Stephan Summerer, Marco Maccaferri, Miguel Sanchez-Garcia, Roberto Tuberosa, Filippo M. Bassi

Global food security is faced with many threats including population growth and changing climate. To cope with these threats a new paradigm shift is required to ensure sufficient and sustainable crop production. Hybrid technology could represent a partly strategic solution for durum wheat, but the understanding of its heterotic behavior is very limited. In this study, 53 F1 plants were produced via half diallel scheme and North Carolina design II, using as parental elite lines selected on the basis of their genetic distance. These hybrids along with their parents were evaluated for different physiological and root traits on a precision phenotyping platform (Lemnatec) at different levels of water stress. Additionally, a second root test was conducted in near field condition via a basket method to determine shallow or deep rooting behavior. Hybrids with the most heterotic combinations in terms of above and below ground biomass were identified. However, in order to ensure adequate pollination between heterotic parents, their flowering time must overlap. To identify good matching partners, a GWAS study was conducted to identify genomic regions associated with the control of flowering time in durum wheat. A total of 384 landraces and modern germplasm were assessed at 13 environments with different temperatures and day length throughout the season. Genotyping was conducted by 35K Axiom array to generate 8,173 polymorphic SNPs. In total, 12 significant QTLS for landraces and 17 QTLs for modern germplasm were identified consistently across environments. These two results when combined will allow to predict the best parental partners for hybrid production via markers screening on the basis of their genetic similarity to the most heterotic groups, and with matching flowering times.

Tags:

Genomic scan in durum wheat reveals regions controlling adaptation to the heat-prone conditions of the Senegal River

BGRI 2018 Poster Abstract
Amadou Tidiane Sall ICARDA
Filippo,Bassi, Rodomiro, Ortiz, Ibrahima, Ndoye, AbdelKarim, Filali-Maltouf, Bouchra, Belkadi, Miloudi, Nachit, Michel, Baum, Hafssa, Kabbaj, Habibou, Gueye, Madiama, Cisse, , , , , , , , , ,

Wheat is a major food crop in West Africa, but its production is significantly affected by severe heat. Unfortunately, these types of high temperatures are also becoming frequent in other regions where wheat is commonly grown. In an attempt to improve durum wheat tolerance to heat, a collection of 287 elite breeding lines, including several from both ICARDA and CIMMYT, was assessed for response to heat stress in two irrigated sites along the Senegal River: Fanaye, Senegal and Kaedi, Mauritania during 2014-2015, and 2015-2016 winter seasons. The maximum recorded grain yield was 5t ha-1, which was achieved after just 90 days from sowing to harvesting. Phenological traits (heading, maturity and grain filling period) and yield components (1000-kernel weight, spike density and biomass) had also large phenotypic variation and a significant effect on grain yield performance. This panel was genotyped by 35K Axiom to generate 8,173 polymorphic SNPs. Genomic scans identified a total of 34 significant association between single nucleotide polymorphisms (SNPs) and traits across the four environments, including 15 related to phenological adaptation, 12 controlling grain yield components, and seven linked to grain yield per se. The identification of these genomic regions can now be used to design targeted crosses to pyramid heat tolerance quantitative trait loci (QTL), while the SNPs underlying these QTL can be deployed to accelerate selection process facilitated by DNA-aided breeding.

Tags:

Spike photosynthesis and its role in grain filling in Indian wheat (Triticum aestivum L.)

BGRI 2018 Poster Abstract
Chanderkant Chaudhary Department of Plant Molecular Biology, University of Delhi South Campus
Paramjit Khurana

The flag leaf and spike are the prime organs in wheat (Triticum aestivum L.) which contribute majorly for spike photosynthesis and eventually aid in grain filling. In this study we have tried to elucidate the effect of abiotic stress on the grain filling and spike photosynthesis. In order to unravel the role of flag leaf, awn, and spike in wheat grain filling and spike photosynthesis, 1000-kernel weight were calculated after removing flag leaves, awns, and by shading the spike in four wheat genotypes (PBW343, C306, K7903, HD2329) for two seasons (2014-2015, 2015-2016). A significant decrease in the grain filling was observed for all the genotypes. These results indicate the role of these organs in spike photosynthesis. The role of the awn tissue was investigated in PBW343 for its role in spike photosynthesis during heat stress. Deep transcriptome sequencing of the awn tissue (PBW343) was performed and it revealed 147573 unigenes. Out of these, 394 genes were differentially expressed genes (DEGs). These DEGs constitutes 201 upregulated and 193 downregulated genes. Genes involved in photosynthesis (Ribulose bisphosphate carboxylase/oxygenase activase B, NADH dehydrogenase, Fe-S protein2), membrane integrity (ATP-dependent zinc metalloprotease FTSH6), and ion channel transporters (two-pore potassium channel3) were prominently expressed. Gene Ontology (GO) enrichment analysis represents PSII associated light-harvesting complex II catabolism, chloroplast organization, photosynthesis light harvesting in photosystemI, ethylene biosynthesis, regulation of oxidoreductase activity, stomatal closure, chlorophyll biosynthesis categories, which are highly overrepresented under heat stress conditions. Therefore, utilizing the awn transcriptome information, Rubisco activase (RCA) gene was chosen for overexpression studies in wheat and rice with the aim to enhance the photosynthetic efficiency of the spike tissue leading to higher grain filling.

Tags:

Impact of stem rust infection on grain yield of selected wheat cultivars in Egypt

BGRI 2018 Poster Abstract
Osama Abd El Badia Wheat Disease Research Department
Mohamed Abdalla, Sobhy Negm, Adel Hagras

This work was carried out to study the response of five bread and two durum wheat cultivars to stem rust and its effect on grain yield under field conditions at Sids and Beni Sweif stations during the three growing seasons 2011/2012, 2012/2013 and 2013/2014. The loss in grain yield and kernel weight of the different wheat genotypes was variable according to the varietal response. Grain yield and kernel weight of the protected plots (protected by the effective fungicide Sumi-eight 5EC(CE)-1-(2,4-dichlorophenyl)1-4,4-dimethyl1-2-(1,2,4-triazol-y1)Pent -1-en -3-0L) at the rate of 70cm /200litter water per Fadden ) of all wheat genotypes were higher than the infected ones. Significant differences were found between infected and protected wheat genotypes.. Disease severity was recorded weekly to estimate area under disease progress curve (AUDPC). The AUDPC ranged from 85.33 to 405.00 (Sids 1 and Sohag 3) during 2011/2012, from 181.66 to 805.00 (Shandwel 1 and Sohag 3) during 2012/2013, and from 142.33 to 585.00 (Shandwel 1 and Sohag 3) during 2013/2014. Losses in kernel weight ranged from 3.39% to 31.03% (Sids 1 and Misr 1) during 2011/2012, from 9.79% to 44.18% (Sids 1 and Sohag 3) during 2012/2013,and from 5.67% to 26.86% (Sids 1 and Sohag 3) during 2013/2014. Yield losses ranged from 5.70% to 37.52% (Shandwel 1 and Misr 1) during 2011/2012, from 7.75% to 45.78% (Shandwel 1 and Misr 1) during 2012/2013, and from 7.14% to 30.59% (Sids 1 and Sohag 3) during 2013/2014. Yield losses correlated strongly with AUDPC. The results of this study indicate that bread wheat cultivars are (Giza 168,Sakha 93, Sids 1, Misr 1, Misr 2 and Shandwel 1) and Durum wheat are ( Beni Sweif 5 and Sohag 3) more tolerant than durum wheat cultivars. The Egyptian bread wheat cultivars Sids 1 and Shandawel 1 are more tolerant than the other bread wheat cultivars.
.

Tags:

Genes Sr2/Yr30 and Lr34/Yr18/Sr57 interact to confer enhanced adult plant resistance to the three rust diseases of common wheat

BGRI 2018 Poster Abstract
Mandeep Singh Randhawa International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico D.F., Mexico
Ravi P. Singh, Caixia Lan, Bhoja R. Basnet, Sridhar Bhavani, Julio Huerta-Espino, Kerrie L. Forrest, Matthew J. Hayden

Common wheat Arula displays an acceptable level of adult plant resistance (APR) to stripe rust (YR), leaf rust (LR) and stem rust (SR) in Mexico, and to SR (Ug99 races) in Kenya. A recombinant inbred line (RIL) population developed from the cross of Arula with susceptible parent Apav was phenotyped under artificially created epidemics of the three rusts in 2014, 2015 and 2016 in Mexico and for SR during the off and main seasons of 2015 in Kenya. The RIL population and parents were genotyped using an iSelect 90K SNP array and 3 gene-linked markers (Sr2/Yr30-gwm533; Lr34/Yr18/Sr57-csLV34; Lr68-csGS), and a genetic map of 2,634 markers was constructed to locate the resistance loci. Two consistent QTL contributed by Arula were detected on chromosomes 3BS and 7DS, which corresponded to the previously known APR genes Sr2/Yr30 and Lr34/Yr18/Sr57, respectively. Sr2/Yr30 explained 1.1-14.7% and 41.0-61.5% of the phenotypic variation for YR and SR, respectively; whereas Lr34/Yr18/Sr57 accounted for 22.5-78.0%, 40.0-84.3% and 13.8-24.8% of the phenotypic variation for YR, LR and SR, respectively. Arula was also found to carry the positive allele for marker csGS closely linked to gene Lr68 on chromosome 7BL, although this gene was not detected using composite interval mapping. Our results show that RILs possessing both Sr2/Yr30 and Lr34/Yr18/Sr57 had significantly enhanced APR to all three rusts in field trials conducted in Mexico and Kenya. Strategic utilization of these two pleiotropic, multi-pathogen resistance genes with other minor genes is recommended to develop durable rust resistant wheat cultivars.

Tags:

Pages