All BGRI Abstracts

Displaying 21 - 30 of 416 records | 3 of 42 pages

Increase in surveillance activities in SAARC region through streamlined efforts and enhanced tool box

BGRI 2018 Poster Abstract
Vijay Paranjape Sathguru Management Consultants
Kanan Vijayaraghavan, Venugopal Chintada, Rituparna Majumder, Richa Kapur, K. Aishwariya Varadan

South Asia has the highest "wheat dependent" low income community in the world. Stem rust and blast are recognized as the most damaging disease of wheat in the region producing 19% of the world's wheat. In order to combat the potential threat the national research centers were geared up to track the real time movement of wheat diseases, generate disease incidence data and create an enabling environment to boost wheat research in the region through streamlined efforts and enhanced SAARC tool box deployed six years ago.
Recent data (2016-17) from the tool box has shown a significant increase in the data records captured in this region compared to previous years. This has been possible because of heightened awareness amongst the scientists and with the continuous capacity building through pre-season and in-season surveillance trainings organized by Sathguru in collaboration with National Wheat Research Institutes at various levels.
The model is helping partner institutes to be self-sufficient for generating, maintaining wheat disease surveillance data in national and global databases and exchanging real time information with stakeholders. The application have been widely deployed and competently being used by 95% of rust surveillance teams in the wheat fields of SAARC region.
The study will focus on how national research center's judicious decision of carrying out diligent surveillance during the season contributed to safeguarding wheat crops in their respective nations through increased vigilance on emergence of new races and targeted introduction of regionally resistant varieties. Further using this data scientist's can aim to strategize their wheat research for identification of resistant varieties and eventually resulting in increased productivity addressing food security of the region.

Tags:

Changes of some physiological parameters of different wheat genotypes in ontogenesis depending on infection of leave level

BGRI 2018 Poster Abstract
Javanshir Talai Research Institute of Crop Husbandry, Azerbaijan
ATIF,ZAMANOV, Konul, Aslanova, , , , , , , , , , , , , , , , , , , , , , , , , ,

Rust diseases are considered the main stress factors that limit wheat productivity in the Azerbaijan. The studies on the impact of rust diseases on physiological processes at reproductive vegetation period is of very importance with view of evaluating size of yield and quality of the studied genotypes. For this purpose the studies focused on bread wheat genotypes (Triticum aestivum L.), which differ sharply by architectonics, biological peculiarities and resistance to rust diseases. Comparative evaluation of the studied genotypes by physiological and quality parameters has been undertaken in two options: over plants infected with diseases in natural background, and over healthy plants (fungicide sprayed plants). Area of photosynthesis apparatus of leaf story (18,3-50,2 sm2) of the studied wheat genotypes changes in wide interval. Infestation level of leaves with yellow rust (Puccinia striiformis West.) in wheat genotypes grown in natural infection background fluctuates between 5MS-40S in ontogenesis, but between 10MS-90S with brown rust (Puccinia recondita Desm.).
High level of infection with rust diseases leads to reduced size of leaf assimilation area and defoliation. Reduction of these dimensions makes up 10-90% in lower story leaves of genotypes infected with rust diseases, but 20-30% in upper story leaves. Genotypes with large and bending leaves subject to this disease more frequently. Value of photosynthesis intensity in ontogenesis at upper story leaves of the genotypes infected with rust diseases at natural background fluctuates between 6-18 ?mol CO2 .m-2.s-1 depending on level of infection, but in healthy plants between 16-29 ?molCO2 .m-2.s-1. Negative impact of these diseases on normal course of plant physiological process ultimately causes is reflected in yield and quality parameters.

Tags:

Allelism of resistance genes YrH52, YrG303 and Yr15 originating from different wild emmer sources

BGRI 2018 Poster Abstract
Valentina Klymiuk Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Israel
Dina Raats, Lin Huang, Valeria Bocharova, Jorge Dubcovsky, Abraham Korol, Tzion Fahima

Wild emmer wheat (Triticum dicoccoides, (DIC)) is an important source of resistance to stripe rust due to presence of Puccinia striiformis in its natural habitats with high humidity and relatively low temperatures that are favorable for stripe rust development. Previously, we showed that DIC accessions from northern Israel were highly resistant to stripe rust. According to the rust responses of three DIC accessions (G25, H52, G303) and mapping of the resistance to relatively close, but different, genetic positions on chromosome 1BS, three different resistance genes were assumed to be present. However, the development of additional critical recombinants and new higher resolution genetic maps for these three genes in subsequent work led us to place YrH52 and YrG303 in the same genetic interval as Yr15, suggesting that the three putative genes are allelic or identical. The recent cloning of Yr15 allowed us to test this hypothesis using an EMS mutagenesis approach. We sequenced the Yr15 locus in five yrH52 and three yrG303 susceptible mutants and identified missense point mutations associated with the susceptible phenotype in each one. Thus, YrH52 and YrG303 may not be new genes. Further work is under way to determine if these genes are allelic or identical.

Tags:

Wild grass as a reservoir of Fusarium graminearum and source of inoculum

BGRI 2018 Poster Abstract
Michael Fulcher Cornell University
James Winans, Julian Garcia, Kellie Damann, Gary Bergstrom

In addition to causing Fusarium head blight of wheat and other cereals, Fusarium graminearum is associated with dozens of wild or weedy grass species. Their role in the disease cycle and evolution of the pathogen has not been established despite their widespread distribution. A three-year survey of wild grasses in New York (USA) found that inflorescences and overwintered stems were frequently colonized by F. graminearum. Through a series of controlled laboratory experiments, wheat and five common grass species were compared for their potential to support inoculum production. Artificially infested stem tissue from several grasses both retained F. graminearum at higher rates through a single winter and supported greater ascospore production per dry gram than wheat. Susceptibility of these species to root and crown rot was measured with a modified seed germination assay and a diverse panel of F. graminearum isolates. Differences were seen between host species, and some grasses were resistant to infection. Our results indicate that wild grass species may support significant F. graminearum inoculum production while differing in their suitability for root and crown colonization. Studying interactions between F. graminearum and alternative host plants can improve our understanding of evolution in a broad host range pathogen and our ability to predict the risk of crop epidemics. We are currently evaluating isolates collected from wild grasses for mycotoxin production and aggressiveness on wheat.

Tags:

Population dynamics of wheat stem rust fungus in Indian subcontinent during 2009-2015

BGRI 2018 Poster Abstract
Subhash Bhardwaj ICAR-IIWBR, Regional Station, Flowerdale,Shimla 171002 H.P. India
Pramod Prasad, OmPrakash Gangwar, Hanif Khan, Siddanna Savadi, Subodh Kumar

Stem rust (Puccinia graminis tritici) (Pgt) epidemics have been reported from many wheat growing areas of the world. Stem rust races with virulence to Sr31 (Ug99 type races),are a threat to wheat producing African countries. Currently 11 different variants of the Ug99 lineage have been reported from different countries. Despite no report of Ug99 variants from any of the South Asian countries, the efforts are in place to counter the possible introduction of virulent wheat stem rust races. Stem rust surveillance has been a major component of the rust resistance breeding worldwide. This study reports virulence phenotypes and functional SSR marker based genotypes among stem rust collections in the Indian subcontinent during 2009 to 2015.
Wheat stem rust samples were analyzed on differential sets used for pathotype identification in India. Twelve pathotypes of Pgt were identified in a total of 574 samples analyzed. Pgt pathotypes 40A and 11 were identified in 36% and 32% of the samples, respectively. The stem rust resistance genes Sr7a, Sr26, Sr27, Sr31, Sr32, Sr33, Sr39, Sr40, Sr43, SrTmp and SrTt3 were found to confer resistance to the field population identified during this period. The analysis of SSR marker genotypes data revealed a high degree of variability in the Pgt population, with mean gene diversity and polymorphic information content (PIC) values of 0.56 and 0.50, respectively. STRUCTURE software divided the Pgt populations in to four subpopulations with some admixtures. The FST values of pairs of subpopulations ranged from 0.35 to 0.93 which indicated that the four sub-populations were significantly differentiated. The analysis of molecular variance (AMOVA) determined that 16%, 69% and 15% of the totl variation was between population, among and within individuals, respectively. The information generated here could be a useful guide for resistance breeding and gene deployment programmes for saving South Asian wheat from stem rust.

Tags:

Wheat Improvement Program combat in context with global cimate change

BGRI 2018 Poster Abstract
Makhdoom Hussain Wheat Research Institute, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Javed Ahmad, Abid Mahmood

Global warming affects the environmental parameters of agro-based countries like temperature increase, melting of glaciers, floods, erratic rains, low temperature, frost and high temperature. As a result agriculture is becoming more vulnerable to global environmental shifts. In case of wheat, erratic or low rains badly affect the wheat crop of rainfed areas of the country along with high temperature at seedling or juvenile stage. Similarly, frost affects the early sown wheat crop in irrigated areas of Punjab. Lesser availability of irrigation water from water reservoirs also reduces the wheat crop productivity. Sudden increase in temperature (>30?C) during the month of March adversely affect the grain filling. High temperature during grain filling stage interferes with the photosynthetic activities of the plant due to enhanced maturity, grain become shriveled and results in low grain yield. The threat of these environmental changes can only be overcome through breeding with specific objectives which is cost effective once obtained.
Hence development of wheat varieties for frost, drought and heat tolerance is the only feasible solution to combat these stresses which is being used at Wheat Program of Ayub Agricultural Research Institute, Faisalabad, Pakistan. New emphasis is also being given to develop frost resistant wheat varieties due to changing scenario of last few years. The institute is actively involved for the development of heat, drought and frost tolerant wheat varieties. During working for tolerance against any of these stresses plant types to be breed are physiologically and morphologically modeled in such a way that they should be capable of tolerating respective stress. In addition to breeding work an extensive research is also being done at Wheat Research Institute, AARI., Faisalabad to investigate best agronomic strategies to make wheat crop best adapted to environmental stress conditions.

Tags:

The complementary stripe rust resistance gene Yr73 appears to act in a complementary manner with an unidentified gene on chromos

BGRI 2018 Poster Abstract
Robert Park The University of Sydney
Davinder Singh, Peter Dracatos

Following the introduction of wheat stripe rust into Australia in 1979, an uncharacterized resistance (YrA) was identified in both Australian and International spring wheats. Genetic analyses of YrA indicated it was a pair of complementary genes, which were mapped to chromosomes 3DL and 5BL and designated Yr73 and Yr74, respectively. While selection Avocet 'R' carries both genes, selection Avocet 'S' carries Yr73 only. P. triticina pathotype (pt.) 104-1,2,3,(6),(7),11 +Lr37 ("104-VPM"), first detected in Australia in 2002, most likely arose via mutation from pt. 104-1,2,3,(6),(7),11 ("104"), with added virulence for Lr37. Interestingly, while both pathotypes are avirulent on Lr13, 104-VPM shows a much lower Infection Type (IT, ";1") than pt. 104 ("X++3") on several genotypes carrying Lr13 (e.g.Avocet 'R', Avocet 'S'). Other Lr13 genotypes (e.g. cv. Hereward) respond similarly to both pts ("X++3"). Genetic analyses of 4 doubled haploid (DH) populations based on intercrosses between Avocet 'R' and genotypes lacking Lr13 segregated in a 1:7 ratio to pt. 104-VPM (";1" : all other ITs). Two populations fixed for Lr13 (viz. Hereward/ Avocet 'R' and Estica/Avocet 'R') segregated 1:3 to pt. 104-VPM (";1" : all other ITs). This segregation pattern fitted a model where two complementary genes interact with Lr13 to generate the low (IT ";1") IT. Mapping of a Teal/Avocet 'R' DH population using 92 lines and 9,035 DArT-Seq markers identified three QTLs: chromosome 2BS (Lr13); chromosome 3DL (co-located with Yr73); chromosome 1DS. These results suggest that Yr73 acts in a complementary manner with a gene on chromosome 1DS to confer leaf rust resistance (IT "X"), and that these complementary genes are additive with Lr13. It appears that Yr73 is a modifier of two independent genes in wheat, one conferring resistance to stripe rust (Yr74 on chromosome 5BL), and one conferring resistance to leaf rust (LrAv on chromosome 1DS).

Tags:

Varietal performance of wheat varieties against rusts and its adoption in Nepal

BGRI 2018 Poster Abstract
Dhruba Bahadur Thapa Agriculture Botany Division, Nepal Agricultural Research Council
Baidya Nath,Mahto, Sarala, Sharma, Madan Raj, Bhatta, Mahesh, Subedi, Deepak, Pandey, Nutan Raj, Gautam, Suraj, Baidya, Roshan, Basnet, Rudra, Bhattarai, Ajaya, Karkee, Suk Bahadur, Gurung, Prem Bahadur, Magar, Sunita, Adhikari, Bhagarathi, Shahi, Basistha, Acharya

A total of 41 bread wheat (Triticum aestivum L.) varieties have been released so far in Nepal since 1960. Farmers have been gradually adopting newly released varieties due to disease and lodging resistance, better yield performance and good taste. In Nepal, wheat area coverage, production and productivity have been increased by almost seven, sixteen and two folds, respectively in the last 56 years. Performance of varieties varies from one region to another. Yellow rust is the major problems in hills while leaf rust is the primary issue on the plains. Stem rust is sporadic in localized areas of Nepal. Wheat research program in Nepal has released 9 wheat varieties resistant to Ug99 namely Vijaya, Tilottama, Banganga, Gaura, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura. Vijay, Tilottama and Banganga are also resistant to leaf rust while, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura are resistant to yellow rust. Since the release of Vijay, the first Ug99 resistant variety in Nepal during 2010, source seed production of rust resistant varieties has been increasing significantly each year with present coverage under these varieties being around 40%. WK 1204 has been occupied 35% area in hills of Nepal. Seed production and distribution of such high yielding disease resistant varieties through public-private partnership is leading to quality seed supply for varietal diversity and better food security in the country.

Tags:

Molecular screening and identification the carriers of effective Yr genes in wheat germplasm of Central Asia

BGRI 2018 Poster Abstract
Alma Kokhmetova Institute of Plant Biology and Biotechnology
Makpal Atishova, Aygul Madenova, Kanat Galymbek, Jenis Keyshilov, Hafiz Muminjanov, Alexey Morgounov

Wheat rust diseases are a major cause of yield losses of this crop. Yellow (Puccinia striiformis f. sp. tritici) rust is of the most widespread and dangerous disease of wheat and is the major factor that adversely affects wheat yield and quality. The use of genetic host resistance is the most effective, economical and environmentally safe method of controlling stripe rust that allows elimination of fungicides and minimize crop losses from this disease. Due to the threat of the development of epiphytoties of rust disease it is necessary to identify new donors of resistance to yellow rust and to develop resistant wheat breeding material. In the present study, attention was drawn to the effective yellow rust resistance genes Yr5, Yr10 and Yr15, which were identified in the process of molecular screening of wheat germplasm. Genetic analysis using S23M41 molecular marker linked to Yr5 revealed the presence of this gene in 17 out of 136 promising lines. Thirteen genotypes screened with Xbarc8 generated the DNA fragment associated with Yr15. Three advanced lines with Yr10 were identified using the SCAR marker. Three lines carrying two Yr genes (Yr5 and Yr15) were detected. Combination of Yr5 and Yr10 were found in 15 wheat lines. We identified a number of wheat genotypes highly resistant to stripe rust, which could be further evaluated to release new resistant varieties or to be used in the breeding program.

Tags:

Disease resistance of primary hexaploid synthetic wheat and its crosses with bread wheat

BGRI 2018 Poster Abstract
Gular Gadimaliyeva Genetic Resources Institute, Azerbaijan
N. Aminov, A. Jahangirov, H. Hamidov, Aigul Abugalieva, Vladmir Shamanin, Alexey Morgunov

Hexaploid synthetics have become widely used in bread wheat improvement in recent years, enabling the introduction of specific traits as well as enhancing genetic diversity and development of valuable germplasm. This study demonstrated the difference between two groups of primary synthetics in terms of development rate, plant height, rust reactions, and productivity components. During 2015 and 2016, three groups of synthetics were studied in Azerbaijan (3 sites): Baku (0 masl) under irrigated conditions, Gobustan (850 masl) under dry rainfed conditions and Ujar (20 masl) under irrigated conditions with high salinity. Germplasm was also evaluated for diseases and agronomic traits in Omsk (Russia) in 2016.
All primary synthetics were resistant to leaf rust, several to stem rust, and few to stripe rust. Stripe rust occurred in all years at all sites, proving its importance as major wheat pathogen. Its severity reached intermediate levels in Baku in 2016 (33.7%) and in Gobustan in 2015 (26.8%), and epidemic level in Gobustan in 2016 (72.7%). Gobustan also experienced high levels of stem rust in 2016. These two diseases substantially reduced grain productivity in Gobustan in 2016, especially 1000 kernel weight (30.2 g) and grain weight per spike (1.17 g). . Superior genotypes from all three groups were identified that combine high expression of spike productivity traits and stress tolerance index. Five superior synthetics were selected from each of the three groups, based on grain weight per spike. Only four of these demonstrated resistance to stripe rust (entries 13, 15, 31, and 32). Japanese synthetics (group 3) were susceptible to stripe rust but all demonstrated resistance to stem rust. Synthetics from groups 1 and 3 were all resistant to leaf rust when tested under severe disease pressure in Omsk in 2016.

Tags:

Pages