All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Development of bread wheat cultivars for resistance to stem rust for cultivation in north zone of Iran

BGRI 2018 Poster Abstract
Manoochehr Khodarahmi Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Kamal Shahbazi, Jabbar Alt Jafarby, Mohammad Sadegh Khavarinejad, Farzad Afshari, Farshad Bakhtiar, Habibollah Soghi

In this project to obtain resistant wheat breeding lines/cultivars to stem rust disease, new cultivars and lines of the north breeding program were evaluated in greenhouse with races collected in 2014 from northern regions of Iran, Moghan and Gorgan. Artificial inoculation in greenhouse indicated none of the races had virulence on Sr11, Sr13, Sr24, Sr25, Sr26, Sr27, Sr29, Sr31, Sr32, Sr33, Sr37, Sr39, Sr40, and SrTmp. In order to evaluate seedling resistance, 143 wheat cultivars and new lines under greenhouse conditions were inoculated with four isolates of stem rust in four separate experiments in a randomized complete block design with three replications. Evaluation of the northern germplasm under greenhouse conditions showed that some of the genotypes were resistant against all four isolates. The resistance of some of these new lines was also confirmed in Kenya. Regarding other desirable agronomic characteristics, some of these lines will be introduced as new cultivars in the northern region of Iran.

Tags:

Easy method to select plants with two effective leaf rust resistance genes from wheat hybrid populations

BGRI 2018 Poster Abstract
Lev Tyryshkin All-Russian Institute of Plant Genetic Resources

Wheat varieties with single effective gene for leaf rust resistance often quickly become susceptible because of multiplication of virulent Puccinia triticina genotypes. One of the methods to elongate term of effectiveness is to combine two genes in host genotype. To note, it is impossible to distinguish phenotypically plants or families having one or two genes in hybrid populations; the only method is to use PCR producing DNA markers linked to each gene for resistance. It is not convenient when necessary to analyze thousands plants or especially families of crosses between carriers of certain genes. At inoculation of wheat seedlings having Lr 9, 19, 24, 47, 29 and Sp with rust population from North-West region of Russian Federation all of them were absolutely resistant, so these genes may be considered to be effective in this region. Rust population was multiplied on cv. Leningradka leaf segments placed on cotton wool wetted with solution of maleic acid hidrazide (10 mg/l) + potassium chloride (0.48 g/l) +monosubstituted sodium phosphate (0.66 g/l) and used to infect seedling of the lines constantly poured with the solution. Rare pustules were recorded on each line. Isolates from the line were combined, multiplied and used to infect the lines set. Interaction specificity was shown for carriers of certain genes for resistance and inoculums. We propose to infect seedlings of hybrid wheat populations with mixtures of isolates virulent to first gene and those virulent to second one at use of above-mentioned method to multiply rust and grow plants. Seedlings resistant to that inoculum have both genes for resistance. If we have F3 or later families it is possible to use original population without selection of virulent isolates; in this case the method allowed removing progenies of heterozygous plants. With this approach we developed lines possessing combinations of Lr9+Lr24 and Lr9+Lr47 genes

Tags:

Identification of resistant sources against rusts of wheat

BGRI 2018 Poster Abstract
Muhammad Fayyaz Crop Diseases Research Institute, National Agricultural Research Center, Park Road Islamabad, Pakistan
Anjum Munir, Khalil Ahmed Khanzad, Javed Iqbal Mirza, Shahzad Asad, Atiq ur Rehman Rattu, Muahmmad Imtiaz

Evaluation of candidate lines to develop resistant varieties at multiplications in Pakistan is a regular activity which has been successfully done for many years. This approach assists in generation of future resistant cultivars around appropriate genes combinations thereby providing durable resistance outputs for wheat productivity. This year, National Uniform Wheat Yield Trial (NUWYT) comprised of 60 candidate lines. Among these 15 lines were also present in the last years NUWYT. The two years data revealed that there was only one line V-12066 resistant to all three rusts during the two consecutive seasons 2015-16 and 2016-17. Four candidate lines NR-487, V-122557, PR-115 and NRL-1123 were found resistant to yellow and leaf rust during 2015-16 and 2016-17. A candidate line DN-111 was found resistant to leaf and stem rust. There were three lines NW-1-8183-8, NW-5-20-1 and MSH which were found resistant to leaf rust only during two consecutive seasons. Similarly, two candidate lines V-122559 and QS-3 were found resistant to stem rust only, while one line NR-443 was resistant to yellow rust only. The present study provide the screening and evaluation system of Pakistan for promoting and releasing the resistant wheat varieties.

Tags:

How to adapt durum wheat when the environment tries everything to kill it

BGRI 2018 Poster Abstract
Filippo Maria Bassi ICARDA, Rabat
Khaoula El Hassouni, Priyanka Gupta, Hafssa Kabbaj, Meryam Zaim, Amadou Tidiane Sall, Bouchra Belkadi, Ayed Al-Abdallat, Ahmed Amri, Rodomiro Ortiz, Michael Baum

Durum wheat is the tenth most important crop in the world, but its cultivation is mostly limited to harsh, arid, and heat prone marginal lands. Breeding for tolerance to these conditions is often considered the most strategic approach to ensure adaptation, especially when paired with best agronomical practices. The word 'adaptation' summarizes all the research efforts conducted to identify the many traits controlling the mechanisms for withstanding or escaping the traceries of the environment. It can be summarized as "GGE vs E". The durum wheat breeding program of ICARDA deploys targeted phenotyping methods in combination with genomic scans to dissect these 'adaptive' traits into simple loci. These loci can then be pyramided via a combination of international field testing, markers assisted selection, genetically-driven crossing schemes, and genomic selection to derive climate-ready cultivars. Here, several examples of this approach are presented and their implications for 'adaptation' are discussed.

Tags:

Stem rust resistance in durum wheat

BGRI 2018 Poster Abstract
Pablo Olivera University of Minnesota
Ayele Badebo, Worku Bulbula, Matthew Rouse, Yue Jin

Our research objective is to identify new resistance genes in durum wheat that are effective against TTKSK and other significant stem rust pathogen races that could be utilized in durum breeding. We characterized 8,000 accessions for stem rust response in the field (Debre Zeit, Ethiopia, and St. Paul, MN). Accessions with resistant to moderately resistant responses in multiple field evaluations were evaluated at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and six representative U.S. races. We identified 438 durum accessions resistant to moderately resistant in all field evaluations. Among the field-resistant accessions, 273 were resistant to all races used in seedling evaluations. Accessions susceptible at the seedling stage are being evaluated for the presence of adult plant resistance genes. The highest frequencies of resistant lines include landraces from East and North Africa (Ethiopia and Egypt) and advanced breeding lines and cultivars from North America (Mexico and USA). DNA markers will be performed to identify the presence of durum stem rust resistance genes, including Sr13, Sr8155B1, Sr11, and Sr8a. Nineteen resistant accessions were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance in selected lines using the 90K SNP platform.

Tags:

GENETIC MAPPING OF SEEDLING AND ADULT PLANT RESISTANCE FOR STRIPE RUST IN SPRING BREAD WHEAT (TRITICUM AESTIVUM L.)

BGRI 2018 Poster Abstract
Yewubdar Isehtu Ethiopian Institute of Agricultural Research (EIAR)

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Tags:

Functional genomics of thermal stress tolerance in Indian wheat

BGRI 2018 Poster Abstract
Paramjit Khurana University of Delhi South Campus, New Delhi

Towards understanding the molecular mechanisms of heat stress tolerance, we have analyzed heat stressed substractive cDNA libraries and undertaken genome-wide transcriptome exploration for genes associated with spike photosynthetic efficiency during thermal stress. The photosynthetic efficiencies of Aegilops tauschii and Ae. speltoides were also compared. While the former displayed nearly complete recovery of PSII, the adverse effect was more pronounced in the latter. Functional characterization of heat stress-associated transcription factors and thermal stress-associated proteins was also undertaken e.g. TaHSF, TabZIP, TaZnF and TaMIPS, and TaLTPs in the Indian wheat germplasm. Functional characterization of the three heat stress transcription factors was upregulated under high temperatures and other abiotic stresses. They also showed early flowering and better performance with respect to their growth and yield after heat stress. Additionally, we have identified various interacting components associated with thermal stress-mediated plant signaling partners during thermal stress.

Tags:

Gone with the wind: Revisiting stem rust dispersal between southern Africa and Australia

BGRI 2018 Poster Abstract
Botma Visser Department of Plant Sciences, University of the Free State, South Africa
Marcel Meyer, Robert Park, Christopher Gilligan, Laura Burgin, Matthew Hort, David Hodson, Zacharias Pretorius

Despite being 10,000 km apart, the current study emphasizes the potential vulnerability of Australia to wind-borne Puccinia graminis f. sp. tritici (Pgt) spore introductions from southern Africa. Of four Pgt introductions into Australia since 1925, at least two (races 326-1,2,3,5,6 and 194-1,2,3,5,6) are thought to have originated from southern Africa. Microsatellite analysis of 29 Australian and South African Pgt races confirmed close genetic relationships between the majority of races in these two geographically separated populations, thus supporting previously reported phenotypic similarities. Using Lagrangian Particle Dispersion Model simulations with finely-resolved global meteorological data over a 14-year period and a three-day urediniospore survival time, the study showed that long distance dispersal of Pgt from southern Africa to Australia is possible, albeit rare. Transmission events occurred most frequently from central South Africa, but were also possible from southern South Africa and Zimbabwe; while none occurred from a representative source-location in Tanzania. Direct dispersal incursions into both the western and eastern Australian wheat belts were feasible. Together, the genetic and simulation data strongly support the hypothesis that earlier introductions of Pgt into Australia occurred through long-distance wind-dispersal across the Indian Ocean. The study thus acts as a warning of possible future Pgt dispersal events to Australia which could include members of the Ug99 race group. This emphasizes the continued need for Pgt surveillance on both continents.

Tags:

EMS derived changes in susceptibility to P. triticina in wheat.

BGRI 2018 Poster Abstract
John Fellers USDA-ARS HWWGRU

P. triticina has a biotrophic relationship with wheat and needs certain elements from the wheat host for a successful life cycle. In recent years, several long lasting, minor resistance genes have been cloned, and their function suggests that the resistance is not due to a classic NB-LRR gene, but a gene that functions in a biotrophic pathway. The hypothesis was proposed that modification of a susceptibility gene can provide broad, long lasting resistance. To test this hypothesis, Thatcher was treated with EMS and screened for changes in susceptibility. M5 lines were evaluated in the greenhouse with BBBD Race 1 and 5 lines were identified. Also, M5 lines were planted in the field to verify the resistance and test the resistance effectiveness to natural infections of P. triticina. The same five lines were resistant in the field. Resistance ranged from few pustules, a race specific-like reaction, lesion mimics with few or no pustules, and near immunity. These lines were backcrossed to Thatcher, and resistant F2 plants were bulked and sequenced. Gene candidates will be identified and discussed.

Tags:

Economic impact of front line demonstrations on wheat in the Semi-Arid tropics of western Maharashtra, India

BGRI 2018 Poster Abstract
Vijendra Baviskar Agharkar Research Institute Pune
Vijendra Baviskar, Balgounda Honrao, yashavanthakumar kakanur, Vilas Surve, Deepak Bankar, Vitthal Gite, Ajit Chavan, Vijay Khade, Juned Bagwan, Shrikant Khairanar, Sameer Raskar

Frontline demonstrations (FLDs,) on wheat were conducted by Agharkar Research Institute, Pune, during last five rabi seasons from 2012-13 to 2016-17 at farmer's fields of Pune and Satara district under wheat growing area of semi-arid tropics of western Maharashtra, India. Before conducting FLDs, a group meeting held every year in the selected village and specific skill training had imparted to the randomly selected farmers regarding adoption of different improved aspects of cultivation. FLDs comprised of improved wheat varieties viz., MACS 6222, MACS 6478, MACS 3125 (d) and MACS 2971(dic) for Peninsular Zone of India. About 50 ha of FLDs on improved wheat varieties were conducted with active participation of 50 farmers covered an average of 10 farmers and 10 ha per year. Two recent varieties, MACS 6222 and MACS 6478 had shown higher grain yield, ranging between 15 to 55 per cent more over local check and farmer practice than all other FLDs. Recommended packages and practices of wheat FLDs gave higher value of yield, net return and high benefit cost ratio as compared to local check over the years of study. The study has revealed that five years mean extension gap of 4.48 to 9.67 q/ha and technology gap ranging between 11.00 to 22.22 q/ha depending on the variety during the period of study. Net returns of Rs. 63042/ha was observed from improved practice than in the farmer's practice of Rs. 50108/ha and with benefit cost ratio of 3.07 and 2.79 respectively. On average basis, the incremental benefit cost ratio was found as 2.83. In frontline demonstrations, the yield potential of wheat has been enhanced largely due to the increase in the knowledge of farming community and adoption of improved production techniques by farmers.

Tags:

Pages