2013 Wheat Stem Rust Outbreaks: Global Response

Les J. Szabo, USDA ARS CDL

CIMMYT – Ethiopia

Ethiopian Institute of Agricultural Research

GRRC, Denmark

JKI, Germany

USDA ARS CDL/University of Minnesota
Outline

- Background
- Ethiopia
- Western Europe
- Characterization of race TKTT_
- Summary

#bgri2014
Localized wheat stem rust epidemic in Ethiopia.

Wheat stem rust found in Western Europe for the first time in 50 years.
- Germany
- Denmark

Wheat stem rust was also reported from Poland and Finland.
Ethiopia

- On the ground
 - Dave Hodson – CIMMYT
 - Bekele Abeyo – CIMMYT
 - Getaneh Wolderufel, Ethiopian Institute of Agricultural Research
 - Bedada Girma

#bgri2014
Ethiopia Localized Epidemic 2013

Background:

- Variety “Digalu” very popular post 2010 stripe rust epidemic.
 - Good resistance against stripe rust.
 - Good resistance against stem rust Ug99 races.
 - Estimated to occupy c. 30% of the wheat area in Ethiopia (0.5 M ha).
 - Known to carry SrTmp (SrSha7) [released in 2005].
 - Big contributor to record wheat production (4 M tons) in Ethiopia in 2013/14.

Dave Hodson
Ethiopia Localized Epidemic 2013

● Stem Rust Timeline:
 ▶ No stem rust in off-season (July-Aug) in the south.
 ▶ Main season, nothing unusual until early Oct 2013.
 ▶ 10th Oct - Digalu scored 50MSS at Assasa + sample collected
 ▶ 16th Nov – High incidence of stem rust on Digalu (Arsi Robe).
 ▶ 23rd Nov – Epidemic on Digalu in Bale zone

Dave Hodson
• Highest yield losses >90%
• Average yield loss (75 fields, 3 districts) >50%
• Source: B Hundie et al 2014 Bale Crop Loss Assessment
Areas Affected

- 17 districts affected to some extent
- Total wheat area c. 100,000+ ha.
- Rough estimate of stem rust affected area 20,000 - 40,000 ha.

Dave Hodson
Response

- Spore dispersal modelling + alerts (Cambridge University, CIMMYT)
- Extensive sampling (EIAR, CIMMYT)
- Samples sent for pathotyping (EIAR, Ambo, CDL, GRRC)
- Extensive crop loss assessment (EIAR, Kulumsa, Sinana)
- Farmer, regional / local authorities control advice (EIAR)

Dave Hodson
Ethiopia

- On the ground

- Pathotyping
 - Pablo Olivera, University of Minnesota
 - Maria Newcomb, USDA ARS CDL, St. Paul
 - Yue Jin, USDA ARS CDL, St. Paul
 - Matt Rouse, USDA ARS CDL, St. Paul

#bgri2014
Methodology

TOTAL NUMBER OF SAMPLES = 59

All samples:
Race typed based on the North American differential set (Set I)
Characterized on a set of 24 additional Sr genes (Set II)

Single-pustule isolates (up to 4 per sample)
Race typed on the differential set (Set I)

Confirmation of race on Set I and Set II
Differential (set I) and ‘additional Sr genes’ (set II)

<table>
<thead>
<tr>
<th>Diff #</th>
<th>Line</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISr5-Ra</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>CnS_T_monoder.</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Vernstine</td>
<td>9e</td>
</tr>
<tr>
<td>4</td>
<td>ISr7b-Ra</td>
<td>7b</td>
</tr>
<tr>
<td>5</td>
<td>ISr11-Ra</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>ISr6-Ra</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>ISr8a-Ra</td>
<td>8a</td>
</tr>
<tr>
<td>8</td>
<td>CnSr9g</td>
<td>9g</td>
</tr>
<tr>
<td>9</td>
<td>W2691SrTt-1</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>W2691Sr9b</td>
<td>9b</td>
</tr>
<tr>
<td>11</td>
<td>BtSr30Wst</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Combination VII</td>
<td>17 + 13</td>
</tr>
<tr>
<td>13</td>
<td>ISr9a-Ra</td>
<td>9a</td>
</tr>
<tr>
<td>14</td>
<td>IS9d-Ra</td>
<td>9d</td>
</tr>
<tr>
<td>15</td>
<td>W2691Sr10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>CnsSrTmp</td>
<td>Tmp</td>
</tr>
<tr>
<td>17</td>
<td>LcSr24Ag</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>Sr31/6*LMPG</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>Trident</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>McNair701</td>
<td>McN</td>
</tr>
<tr>
<td>S</td>
<td>Siouxland</td>
<td>24 + 31</td>
</tr>
<tr>
<td>S</td>
<td>Sisson</td>
<td>31 + 36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>SwSr22T.B.</td>
<td>22</td>
</tr>
<tr>
<td>Agatha/9*LMPG</td>
<td>25</td>
</tr>
<tr>
<td>Eagle</td>
<td>26</td>
</tr>
<tr>
<td>73,214,3-1/9*LMPG</td>
<td>27</td>
</tr>
<tr>
<td>Federation*4/Kavkaz</td>
<td>31</td>
</tr>
<tr>
<td>ER 5155</td>
<td>32</td>
</tr>
<tr>
<td>Tetra Canthatch / Ae. squarrosa</td>
<td>33</td>
</tr>
<tr>
<td>Mq(2)5XG2919</td>
<td>35</td>
</tr>
<tr>
<td>W3563</td>
<td>37</td>
</tr>
<tr>
<td>Rl6082</td>
<td>39</td>
</tr>
<tr>
<td>Rl6068</td>
<td>40</td>
</tr>
<tr>
<td>TAF 2</td>
<td>44</td>
</tr>
<tr>
<td>DAS15</td>
<td>47</td>
</tr>
<tr>
<td>Satu</td>
<td>Satu</td>
</tr>
<tr>
<td>TAM 107-1</td>
<td>1A.1R</td>
</tr>
<tr>
<td>Fed3/Gabo51BL.1RS-1-1</td>
<td>R</td>
</tr>
<tr>
<td>Iumillo</td>
<td>9g,12,+</td>
</tr>
<tr>
<td>Leeds</td>
<td>9e,13,+</td>
</tr>
<tr>
<td>ST464</td>
<td>13</td>
</tr>
<tr>
<td>NA101/MqSr7a</td>
<td>7a</td>
</tr>
<tr>
<td>Steptoe</td>
<td>-</td>
</tr>
<tr>
<td>Q21861</td>
<td>Rpg1, rpg4, Rpg5</td>
</tr>
<tr>
<td>Morex</td>
<td>Rpg1</td>
</tr>
<tr>
<td>QSM20</td>
<td>rpg4, Rpg5</td>
</tr>
</tbody>
</table>
Races identified per region

- **West Shewa (Nov 4th)**
 - 2 samples
 - Races: RRTTF, JRCQC

- **West Goham (Oct 19th)**
 - 1 sample
 - Race: TTKSK

- **East Shewa (Oct. 21-24th)**
 - 15 samples
 - Races: TTKSK, JRCQC, RRTTF

- **West Goham (Oct 19th)**
 - 1 sample
 - Race: TTKSK

- **Arsi (Oct. 20-28th)**
 - 13 samples
 - Races: TTKSK (12), TKTT- (3)

- **Bale (Nov. 26th)**
 - 6 samples
 - Race: TKTT-

- **Armi (Jan. 21st)**
 - 9 samples
 - Race: TKTT-

- **Bale + Armi (January)**
 - 12 samples
 - Race: TKTT-
Western Europe

- Kerstin Flath, JKL, Germany
- Mogens S. Hovmøller, GRRC, Denmark
Wheat stem rust in Western Europe 2013

Kerstin Flath, JKI, Germany
Mogens S Hovmøller, GRRC, Denmark

Germany: 90 samples collected, 60 recovered JKI
First detected in June
Both winter- and spring wheats

Denmark: 2 samples collected at trial site, harvest time: old 'land races' of wheat

France: Not detected Claude Pope
United Kingdom: Not detected Rosemary Bayles
Races based on seedling test

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>ISr5-Ra</td>
<td>5</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Cns_T_mono_deriv</td>
<td>21</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Vernstine</td>
<td>9e</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ISr7b-Ra</td>
<td>7b</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>ISr11-Ra</td>
<td>11</td>
<td>L</td>
<td>K</td>
<td>L</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ISr6-Ra</td>
<td>6</td>
<td>H</td>
<td>K</td>
<td>H</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>ISr8a-Ra</td>
<td>8a</td>
<td>H</td>
<td>K</td>
<td>H</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>CnSr9g</td>
<td>9g</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>W2691SrTt-1</td>
<td>36</td>
<td>L</td>
<td>K</td>
<td>H</td>
<td>K</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>W2691sr9b</td>
<td>9b</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>P</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>BtSr30Wst</td>
<td>30</td>
<td>H</td>
<td>K</td>
<td>H</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Combinat. VII</td>
<td>17+13</td>
<td>H</td>
<td>K</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>ISr9a-Ra</td>
<td>9a</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>ISr9d-Ra</td>
<td>9d</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>W2691sr10</td>
<td>10</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>CnsSrTmp</td>
<td>Tmp</td>
<td>H</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>LcSr24Ag</td>
<td>24</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Sr31/6*LMPG</td>
<td>31</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Trident</td>
<td>38</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>McNair 701</td>
<td>McN</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Races TKKT(C) and TKTT(C) were dominant among 48 single-pustule isolates derived from 17 samples (Y. Jin, USDA-ARS, St.Paul)
Wheat stem rust in Europe 2013

Kerstin Flath, JKI, Germany
Mogens S Høvsmøller, GRRC, Denmark

Germany: 90 samples collected,
48 recovered JKI
Denmark: 2 samples collected trial site: old
‘land races’ of wheat

Pathotyping GRRC
• Two Danish isolates tested (BGRI & Minnesota differential set & additional)

Results GRRC
• Denmark (2) and German (1) isolates had identical pathotype: TKTT_
• TKTT_ race also identified from:
 • Lebanon (2012)
 • Turkey (2012)
 • Iran (2012, 2013)
 • Egypt (2013)
 • Ethiopia (2013)
Characterization of TKTT_

- Is *Pgt* TKKT_ a single race and/or strain?
 - Pathotyping (Phenotype)

#bgri2014
Are TKTT- from different origins phenotypically identical?

- Comparison of 5 TKTT- isolates:
 - 2 Ethiopian (2013)
 - 2 German (2013)
 - 1 Turkish (2012)

- 163 lines containing Sr gene/s (‘Long Series’)

Olivera et al. USDA ARS CDL
Are TKTT- from different origins phenotypically identical?

- The Ethiopian and Turkish isolates were phenotypically identical.

- The German isolates were identical, but were different from the Ethiopian and Turkish isolates on 4 lines:

<table>
<thead>
<tr>
<th>Line</th>
<th>Sr gene</th>
<th>Ethiopia</th>
<th>Turkey</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>TetraCanthatch/Ae. squarrosa</td>
<td>33</td>
<td>R</td>
<td>R</td>
<td>I/S</td>
</tr>
<tr>
<td>NA101/MqSr7a</td>
<td>7a</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Federation SrTt-3/6*LMPG</td>
<td>Tt-3</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>CSID 5406</td>
<td>45</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>

Olivera et al
Characterization of TKTT_

- Is TKKT_ a single race and strain?
 - Genotyping
 - Pgt SNP Chip
 - 1,532 markers
 - Principle coordinate analysis

Szabo et al, USDA ARS CDL
Principle Coordinate Analysis of SNP data

PCA, 1,113 SNP loci First 3 coordinates account for 85% of the variation
Principle Coordinate Analysis of SNP data

"TYPE A"
12TUR1B-3
12TUR4M2-3
13TUR13-1
13TUR24-1
13TUR26-1
13TUR28-1
13TUR32-2

"TYPE B"

PCA, 1,113 SNP loci First 3 coordinates account for 85% of the variation
Principle Coordinate Analysis of SNP data

PCA, 1,113 SNP loci First 3 coordinates account for 85% of the variation
Characterization of TKTT_

- How susceptible is the current wheat?
Status of current wheat lines

<table>
<thead>
<tr>
<th>Germplasm</th>
<th>Resistant to TTKSK (IT ≤ 2+)</th>
<th>Resistant to TTKSK and TKTT- (IT ≤ 2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(8/9)SRRSN (833)</td>
<td>344 (41%)</td>
<td>257 (31%)</td>
</tr>
<tr>
<td>C5WWSSRN (125)</td>
<td>37 (30%)</td>
<td>22 (18%)</td>
</tr>
<tr>
<td>19FAWWON (272)</td>
<td>31 (11%)</td>
<td>24 (9%)</td>
</tr>
<tr>
<td>US-2013 (1683)</td>
<td>440 (26%)</td>
<td>258 (15%)</td>
</tr>
<tr>
<td>Ethiopia-elite lines (76)</td>
<td>47 (62%)</td>
<td>37 (49%)</td>
</tr>
</tbody>
</table>

Jin et al, USDA ARS CDL
Summary

- 2013 was an unusual year for wheat stem rust.
 - Localized epidemic in Ethiopia (20,000-40,000 ha).
 - Affected areas had an average of 50% loss, with some areas more than 90% loss.
 - Stem rust was observed in Western Europe for the first time in 50 years.
 - *Pgt* race TKTT_ was responsible for the epidemic in Ethiopia and a predominant race found in Western Europe.

#bgri2014
What do we know about *Pgt* race TKTT_?

- It is **NOT** related to the Ug99 race group.
- It is not new, first observed in Turkey in 2005.
- It is broadly distributed:
 - Denmark (2013)
 - Egypt (2013)
 - Ethiopia
 - Germany (2013)
 - Iran (2012, 2013)
 - Turkey (2005 – 2013)
What do we know about *Pgt* race TKTT_?

- It is a race group:
 - Variation in pathotypes.
 - Composed of at least 2 genetic groups.
Take home

- Local and global resources were successfully mobilized and responded to these new outbreaks.

- Live collections of *Pgt* were rapidly shared with multiple institution for race pathotyping and genotyping.

- Data was quickly shared and race phenotyping was confirmed across multiple institutions.

- Current wheat germplasm contains resistance to both Ug99 race group *and* this new race (TKTT_) group.
Acknowledgements

- Ethiopia
 - Dave Hodson, CIMMYT
 - Bekele Abeyo, CIIMMYT
 - Bedada Girma
 - Getaneh Wolderufel

- Germany
 - Kerstin Flath, JKL

- Denmark
 - Mogens S. Høvsmøller, GRRC
 - Mehran Patpour, GRRC

- USA
 - USDA ARS CDL
 - Yue Jin
 - Maria Newcomb
 - Pablo Olivera
 - Matt Rouse
 - Les J. Szabo

- BGRI, DRRW
“Rust never sleeps” – Norman Borlaug

“Rust is a shifty enemy” – E.C. Stakman