2014 Technical Workshop

22-25 March

Universidad La Salle Noroeste
Cd. Obregón, Mexico

Poster Index
Coordination and Infrastructure to Ensure Rust Resistance

1 CIMMYT-KARI-DRRW partnership in East Africa: Working together to beat the threat of stem rust Ug99, S. Bhavani et al.
2 The OSAU – CIMMYT shuttle breeding program: Results and prospects, V.P. Shamanin et al.
3 Importance of yellow rust trap nurseries evaluation under rainfed environments of Central Mexico, M.F. Rodríguez-García et al.
4 Revitalization of the CDRI Murree laboratory and its results for 2012-13, J.I. Mirza et al.
5 Guidelines for development of comprehensive national policies for integrated management of the wheat rusts, F. Dusunceli et al.
6 Contingency plan for management of wheat rusts in Morocco, A. Ramdani et al.

Monitoring the Rust Pathogens

7 Mitigation of the global threat of wheat stripe rust in Algeria, A. Benbelkacem
8 Virulence and diversity of the stripe rust pathogen in Egypt, 2009 to 2013, A.A. Shahin et al.
9 Race analysis of wheat rust pathogens in Pakistan, J.I. Mirza et al.
10 Virulence spectra and strategic management of wheat rusts in the Indian subcontinent, S.C. Bhardwaj et al.
11 Pathotype diversity in Puccinia triticina on wheat in Nepal in 2010-2012, S. Baidya et al.
12 New races of Puccinia striiformis f. sp. tritici in Syria, M. Kassem et al.
13 Wheat stripe rust surveys in CWANA and a Regional Cereal Rust Research Center at Izmir, Turkey, K. Nazari
14 Cereal rust monitoring in Georgia, K. Natsarishvili et al.
15 Occurrence of wheat stripe and stem rust in Germany and consequences for breeders and growers, K. Flath et al.
16 Insights into the epidemiology of wheat stripe rust in Australia since the introduction of the ‘WA pathotype’ in 2002, A.M. Daly et al.
17 Physiological specialization in Puccinia graminis tritici on wheat in Argentina during 2012, P. Campos and J. López
18 Induced resistance to stripe (yellow) rust using chemical inducers, E.M. Al-Maaroof et al.

Barberry Surveillance

19 Stem rust in the presence of barberry, A. Berlin
20 Surveying stem rust and barberry in South America, T. Fetch et al.

*Lead author is a graduate student.
BGRI 2014 Technical Workshop • 22-25 March • Obregón, Mexico
Development of a web-based geospatial database for sharing historic United States barberry eradication records, T.D. Murray and L. Kennaway

Detection and phylogenetic relationships of *Puccinia emaculata* and *Uromyces graminicola* affecting switchgrass (*Panicum virgatum*) in New York (USA) using rDNA sequence information, S.C. Kenaley and G.C. Bergstrom

New Tools for Rust Resistance Breeding

Validation of SNP chromosome locations via diverse molecular markers in three wheat mapping populations, S. Liu et al.

Application of the Ug99 SNP assay on herbarium stem rust specimens, B. Visser et al.

Identification of markers linked to stem rust resistance in wheat landraces by bulked segregant analysis, E.M. Babiker et al.

Applying genomic selection to CIMMYT spring wheat for end-use quality, S.D. Battenfield et al.*

Optimization of barley stripe mosaic virus for virus induced gene silencing in wheat, S.M. Clark et al.

Understanding Mechanisms of Resistance

PNPi, *Puccinia NPR1 interactor*, a rust effector that supresses NPR1-mediated resistance by competing with TGA2, X. Wang et al.*

A comparative transcriptome analysis to dissect host-pathogen interactions, W.T. Zhang et al.

Quantification of fungal colonization in wheat lines with adult plant stem rust resistance, H.D. Castelyn et al.*

Understanding durable rust resistance in barley, R.F. Park et al.

Lr34 is the key to durable leaf rust resistance in the Canadian cv. Pasqua, B.D. McCallum and J. Thomas

Genetic Resources for Rust Resistance

Mapping and validation of two QTL conferring stripe rust resistance in hexaploid wheat, N. Cobo et al.*

Mining of new rust resistance genes from progenitor species of wheat, P. Chhuneja et al.*

Genome wide association mapping for stripe rust resistance in Pacific Northwest winter wheat, Y. Naruoka et al.

Yr57: A new locus for stripe rust resistance in wheat, M.S. Randhawa et al.*

Effective rye-derived resistance gene *Lr45* is combined with *Triticum timopheevii*-derived gene *Sr36* in Indian bread wheat cultivars, M. Sivasamy et al.

Lead author is a graduate student.

BGRI 2014 Technical Workshop • 22-25 March • Obregón, Mexico
Identification and mapping of novel QTLs for leaf rust resistance derived from a tetraploid wheat *T. dicoccum* accession, F. Desiderio et al.

Evaluation and stability analysis of near-isogenic wheat lines carrying single genes for leaf rust resistance, W. M. El-Orabey

An effective and apparently new source of adult plant resistance to leaf rust in bread wheat, A.N. Mishra et al.

Mapping of leaf rust resistance and non-glaucousness genes from *Aegilops tauschii* on chromosome 2DS, M. Saluja et al.

European winter wheat cv. Rialto: A source of resistance to leaf rust, B.G. Temesgen*

SrND643: a new gene effective against the *Pgt* race Ug99 group, B.R. Basnet et al.

Mapping putatively novel Ug99-effective APR QTLs in a biparental spring wheat population using 9K and *de novo* SNPs, P. Bajgain et al.*

Mapping adult plant resistance to *Pgt* race Ug99 in Ecuadorian wheat cv. Morocho Blanco, J. Briggs et al.*

Identification and genetic mapping of a putatively novel Ug99 stem rust resistance gene in hexaploid wheat, L. Gao et al.

A search for new resistance to *Pgt* race TTKSK in wheat-intergeneric hybrids and their derivatives, J. C. Kielsmeier-Cook et al.*

Fine-mapping *SrCad* on wheat chromosome 6DS, C. Hiebert et al.

Field responses of wheat lines with resistance to African *Pgt* race PTKST introgressed from *Aegilops sharonensis*, Z.A. Pretorius et al.

Control of highly diverse *Puccinia graminis* f. sp. *secalis* pathotypes using novel resistances from rye genetic resources, T. Miedaner et al.

Stem rust resistance in ‘Jagger’ winter wheat, M.K. Turner et al.*

Reactions of some Turkish *Aegilops* and *Triticum* materials to *Puccinia graminis* f. sp. *tritici* race PKTTC, K. Akan et al.

Development of D genome specific genetic linkage map and mapping of disease resistance genes, S. Kaur et al.

Multi-location analysis by linkage mapping and genome wide association: A tale of three populations, two diseases, major genes, minor genes, and genetic background, M.D. Vazquez et al.*

Can the 7DL-7Ag translocation become a substitute for the 1BL.1RS translocation?, V.K. Vikas et al.

Seeds of Discovery (SeeD): Generating new resources for mobilizing novel genetic variation into breeding programs, S. Singh et al.

Rust Resistance in Durum Wheats

Phenotypic variation in leaf rust response in Mexican durum wheat landraces collected in Oaxaca, J. Huerta-Espino et al.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Mapping of stripe rust resistance gene Yr56 in durum wheat cultivar Wollaroi</td>
<td>U. Bansal and H. Bariana</td>
</tr>
<tr>
<td>59</td>
<td>Leaf rust reactions of a Triticum durum germplasm collection</td>
<td>M. Aoun et al.*</td>
</tr>
<tr>
<td>60</td>
<td>Searching for resistance to rusts in durum wheat genetic resources</td>
<td>A. Bari et al.</td>
</tr>
<tr>
<td>61</td>
<td>Responses of some Turkish durum wheat genotypes to stem rust and stripe rust</td>
<td>K. Akan et al.</td>
</tr>
<tr>
<td>62</td>
<td>New sources of resistance to stem rust and leaf rust in durum wheat in India</td>
<td>T.L. Prakash, et al.</td>
</tr>
</tbody>
</table>

The World of Rust Resistance Breeding

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Evaluation of Kenyan and introduced wheat germplasm for seedling and adult plant resistance to Puccinia graminis f. sp.tritici race Ug99</td>
<td>Z. Kosgey et al.*</td>
</tr>
<tr>
<td>65</td>
<td>The importance of wheat stripe rust in Ethiopia: Historical perspective, current status, and future directions</td>
<td>B. Abeyo et al.</td>
</tr>
<tr>
<td>66</td>
<td>Agronomic performance of promising bread wheat varieties in Rwanda</td>
<td>L. Habarurema et al.</td>
</tr>
<tr>
<td>67</td>
<td>Preliminary evaluation of Ethiopian emmer land races to wheat rusts and Septoria leaf blotch in southeastern Ethiopia</td>
<td>B. Hundie</td>
</tr>
<tr>
<td>68</td>
<td>Breeding for resistance to stem rust in South Africa</td>
<td>T.G. Terefe et al.</td>
</tr>
<tr>
<td>69</td>
<td>Screening for rust resistance and grain quality in CIMMYT advanced lines under Moroccan conditions</td>
<td>K. Rhrib et al.</td>
</tr>
<tr>
<td>70</td>
<td>Effectiveness of Yr genes under high inoculum pressure: Yr15 was the most effective one under Moroccan conditions during the 2012-2013 cropping season</td>
<td>A. Ramdani et al.</td>
</tr>
<tr>
<td>71</td>
<td>The leaf rust situation and resistance in wheat cultivars deployed in northwestern Pakistan</td>
<td>S.J.A. Shah and M. Ibrahim</td>
</tr>
<tr>
<td>73</td>
<td>Genetic diversity analysis of pre- and post-green revolution wheat varieties of Pakistan based on RAPDs</td>
<td>N. Qureshi et al.</td>
</tr>
<tr>
<td>74</td>
<td>Seedling stem rust responses of Pakistani wheat varieties</td>
<td>Y. Rauf et al.</td>
</tr>
<tr>
<td>75</td>
<td>Genetic diversity for adult plant resistance to leaf rust in bread wheat</td>
<td>A.N. Mishra et al.</td>
</tr>
<tr>
<td>76</td>
<td>Status of stripe rust resistance in popular wheat cultivars in India</td>
<td>M.S. Saharan et al.</td>
</tr>
<tr>
<td>77</td>
<td>Status of rust resistance genes in wheat cultivars of central and peninsular India</td>
<td>J. Kumar, J et al.</td>
</tr>
<tr>
<td>78</td>
<td>Developing wheat varieties resistant to Pgt race Ug99</td>
<td>R. Chatrath et al.</td>
</tr>
<tr>
<td>79</td>
<td>Development of rust resistant wheat varieties for food security in Bangladesh</td>
<td>M.J. Uddin et al.</td>
</tr>
<tr>
<td>80</td>
<td>Status of wheat rust management in Bangladesh</td>
<td>P.K. Malaker et al.</td>
</tr>
</tbody>
</table>

*Lead author is a graduate student.

BGRI 2014 Technical Workshop • 22-25 March • Obregón, Mexico
Screening of imported barley accessions and selection of suitable lines for the high hills of Nepal, K.M. Basnet and R.B. Khadka

Combating stripe rust in the hills of Nepal through resistance gene deployment, S. Sharma et al.

Evaluation of the Nepalese wheat gene pool for drought and stripe rust responses, R.B. Amgai et al.

Development of stem rust resistant germplasm using conventional and molecular methods, A. Kokhmetova et al.

Assessment of a wheat collection for resistance to stem rust, R. Dumbadze and Z. Sikharulidze*

Cold tolerance, local rust, and Ug99 reactions of some wheat genotypes from the Eastern Anatolia Agricultural Research Institute, Erzurum, Turkey, U. Kuçükozdemir et al.

Assessment of seedling resistances to leaf rust, stem rust and stripe rust in Turkish wheat cultivars, B. Gocmen Taskin et al.

Resistance of some international bread wheat material to yellow rust in Central Anatolia, K. Akan et al.

Reactions of Iranian wheat lines to Pgt race TTKSK in 2013, F. Afshari et al.

Association analyses of leaf rust and stripe rust resistances in a panel of eastern U.S. winter wheat lines, K.R. Merrill et al.*

Evaluation of winter wheat in the northern Great Plains for resistance to leaf rust, A. Kertho et al.*

Rust resistance in western Canadian winter wheat, R.J. Graf et al.

Seed Delivery and Adoption

A gender-response study of farmer preferences of bread wheat traits in Nepal, V. San Juan*

Establishing food and nutritional security in the Eastern Gangetic plains of India through biofortified rust resistant wheat varieties, C. Tiwari et al.

*Lead author is a graduate student.

BGRI 2014 Technical Workshop • 22-25 March • Obregón, Mexico
Stem rust in the presence of barberry

A. Berlin

Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden

E-Mail: anna.berlin@slu.se

Puccinia graminis is the causal agent of stem rust on cereals, a disease that has been known and feared for centuries. In Sweden, a law for removal of barberry was implemented from 1918 until 1994. Since then, the occurrence of barberry has increased, as well as stem rust on cereals and grasses. Our studies have shown that barberry is an important part of the disease cycle in Sweden and genetic variation in the pathogen is high, both within and between infested fields. Until now, only oats, rye and some wild grasses are infected by *P. graminis*. We found clear genetic and morphological differentiation between *P. graminis* isolates infecting rye and oats. Why wheat is not affected remains a question to be answered, since most Swedish wheat cultivars are susceptible to *P. graminis* f. sp. *tritici*.
Surveying stem rust and barberry in South America

T. Fetch¹, M.S. Chaves², S. German³, P. Olivera³, P. Campos⁴, Y. Jin⁵, L. Szabo⁵ and J. Martinelli⁶

¹AAFC Brandon Research Centre, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; ²EMBRAPA Trigo, Road BR285, Km 294, Passo Fundo, RS 99001-970, Brazil; ³INIA La Estanzuela, Ruta 50 km 11, Colonia, Uruguay; ⁴INTA Bordenave Experimental Station, Ruta 76 km 36,5, Bordenave, Argentina; ⁵USDA ARS Cereal Disease Laboratory, 1551 Lindig Street, St. Paul, MN 55108, USA; ⁶Universidade Federal Rio Grande do Sul, 7712 Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil

E-mail: Tom.Fetch@agr.gc.ca

The discovery of Ug99 stem rust with virulence on most widely grown wheat cultivars worldwide triggered substantial new research on host resistance genes and associated virulence dynamics in the pathogen. Ug99 is mutating and migrating, with eight variants presently known, and has spread throughout eastern Africa, across the Red Sea to Yemen and Iran, and to South Africa. It has been speculated that further movement of Ug99 spores from South Africa to South America could happen on prevailing winds that occur about eight days per month on average. While Ug99 is not yet present in South America, this is a critical entry point into the Western Hemisphere as demonstrated by introduction of soybean rust to Paraguay in 2001. Thus, work was initiated to engage countries in South America to participate in monitoring for its occurrence. Stem rust surveys are currently conducted in Argentina, Brazil, and Uruguay on a regular basis. Each country has a national agricultural institute with adequate to good capacity to perform pathotyping work, but have limitations due to inadequate greenhouse cooling. We will present the current virulence dynamics of Pgt in each country. In addition to surveys for rust, we searched for the presence of Berberis spp. in Brazil. Berberis laurina was abundantly distributed in the Rio Grande du Sul state near the city of Caçapava. Leaves sampled in October displayed low to moderate aecial infections. Determination of the pathogen species infecting B. laurina is currently being determined by physiologic and molecular methods.
Development of a web-based geospatial database for sharing historic United States barberry eradication records

T.D. Murray¹ and L. Kennaway²

¹Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; ²USDA APHIS PPQ Center for Plant Health Science & Technology, Fort Collins Lab, Fort Collins, CO 80526, USA

E-mail: tim.murray@wsu.edu

Puccinia graminis f. sp. _tritici_ (_Pgt_), cause of black stem rust, is a destructive pathogen of wheat and barley. _Pgt_ is heteroecious and in North America completes its life cycle primarily on common barberry, _Berberis vulgaris_, and other susceptible _Berberis_ or _Mahonia_ species and their hybrids (_Mahoberberis sp._). The United States Barberry Eradication Program (BEP) began in 1918 with 17 northern-tier wheat-producing states participating, and ended in 1981 with over 400 million barberry bushes destroyed. Data from the BEP was recorded on paper records; United States Department of Agriculture Form L. Retrieving data from Form L records is cumbersome and no consistent effort was made to archive them when the BEP ended. The objective of this project was to digitize remaining Form L data and develop a web-based geospatial database for sharing it. Over 32,000 BEP Form L records were obtained for the states of Idaho, Oregon, Montana, South Dakota, Washington, Wisconsin and Wyoming, scanned as .jpg images, and coded by state and county using US FIPS codes and accession numbers for collection sites. About 13,000 records have been entered into the database to date. Each record was entered by locating it on a map using a variety of current geospatial data and the address of the historic record. The data are served via a web-based mapping application with each record represented by a single point. Users can select individual points to access information about the collection site including the number of barberry bushes present. Ultimately, users will be able to access an image of the Form L for each collection site. This tool will allow users to visualize current and historic patterns of disease outbreaks relative to locations of past or current barberry bushes, identify areas of pest risk or hazard, and assist in optimizing survey and control resources.
Detection and phylogenetic relationships of *Puccinia emaculata* and *Uromyces graminicola* affecting switchgrass (*Panicum virgatum*) in New York State using rDNA sequence information

S.C. Kenaley and G.C. Bergstrom

Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853-5904, USA

E-mail: gcb3@cornell.edu

Several species of rust fungi infecting switchgrass (*Panicum virgatum*) in North America have been described; *Puccinia emaculata* and *Uromyces graminicola* are documented throughout the north central and eastern U.S. Although morphological characteristics of telia and teliospores have been used to differentiate the two species, morphometric analyses alone have been inadequate in assessing their phylogenetic relationships. Leaf rust commonly occurs on switchgrass late in the growing season in bioenergy feedstock systems in New York; however, the rust species responsible for inciting disease have remained unclear. In the present study, we extracted fungal DNA from single-sori (uredinia or telia) and, using PCR and Sanger sequencing, selectively amplified and sequenced the nuclear ribosomal internal transcribed spacer (nr ITS) region. Infected leaves were obtained in 2011-2013 from different switchgrass ecotypes and localities including multiple sites in New York as well as individual collections from Alabama, Iowa, Nebraska, Pennsylvania, South Dakota, and West Virginia. Maximum likelihood, maximum parsimony, and Bayesian analyses demonstrated two monophyletic clades. Clade I consisted of *P. emaculata* and included the majority of rust isolates from each state except Iowa. Clade II was sister to *P. emaculata*, suggesting a shared common ancestry, and included multiple isolates from Iowa, Nebraska, and New York. Nucleotide identity and genetic distances between isolates in Clade I and II were also significantly different. Morphological analyses of the teliospores supported the phylogenetic results as distinct taxa with Clade I, i.e., *P. emaculata*, possessing only two-celled teliospores, and Clade II possessing only one-celled teliospores. No *U. graminicola* sequences exist in GenBank to compare with our Clade II isolates; however, based on teliospore morphology, the putative identity of Clade II is *U. graminicola*.