BGRI 2013 Technical Workshop
19–22 August, New Delhi, India

Index to Posters

Adoption or Rust Resistant Wheat
1 Accelerated women’s participation in promotion of rust resistant wheat varieties in hills of Nepal, S. Sharma et al.
2 Nepal-CIMMYT collaboration in increasing food security through wheat research and development, D.B. Thapa et al.
3 Going beyond component technologies to integrated systems for enhancing the adoption of rust tolerant wheat varieties: Experience of EAAPP in Ethiopia, M. Yami et al.
4 Determinants of adoption of rust resistant improved wheat varieties in the Robe and Digelu Tijo districts of Oromiya region, Ethiopia, T. Solomon et al.

New Tools for Breeding
5 A consensus map for race Ug99 stem rust resistance loci in wheat, L.-X. Yu et al.
6 Closely linked markers for Yr51: From discovery to implementation, M.S. Randhawa et al.
7 Development of a wheat core germplasm set for precision breeding, A. Tiwari et al.
8 Evaluation of design strategies for genomic selection training populations: A wheat stem rust resistance case study, J. Rutkoski et al.

Mapping and Molecular Dissection of Rust Resistance
9 Sources of resistance to stripe rust identified using molecular markers, J.P. Jaiswal et al.
10 Genetic analysis of resistance to leaf rust and stripe rust in Indian wheat cv. Sujata and NP876, C.X. Lan et al.
11 Resistance to leaf rust and stripe rust in common wheat cv. Francolin#1, C.X. Lan et al.
12 Identification and mapping of genetic factors controlling stripe and leaf rust resistance in spring wheat, A. Singh et al.
13 Molecular mapping and improvement of leaf rust resistance in wheat breeding lines, T. J. Tsilo et al.
14 Identification and mapping of genetic factors controlling stem rust resistance in spring wheat and the study of their epistatic interactions across multiple environments, A. Singh et al.
Genomic localization and genetic mapping of race-specific stem rust resistance in the Synthetic W7984 x Opata M85 double haploid population, S.M. Dunckel et al.

Seedling resistance to wheat leaf rust in Thatcher isolines carrying race specific and race non-specific genes, S. Dugyala et al.

Breeding high yielding micronutrient-rich wheat varieties with resistance to rusts, G. Velu et al.

Leaf tip necrosis, lesion mimic genes and resistance to spot blotch in spring wheat, P.S. Yadav et al.

Molecular marker assisted accelerated improvement of wheat varieties with multiple rust resistances, Vinod et al.

Comparison of GBS vs. SNP-chip approaches for mapping Ug99-effective APR QTLs, P. Bajgain et al.

Deciphering single nucleotide polymorphism using Next-Generation Sequencing data in hexaploid bread wheat, S. Chandra et al.

Characterization of recombinant Lr34 protein: A putative wheat ABC transporter involved in leaf rust resistance, R. Nandhakishore et al.

In silico identification, annotation and expression profiling of wheat WRKY transcription factors in response to leaf rust pathogenesis using Next Generation Sequencing data, L. Satapathy et al.

Functional characterization of a wheat WRKY transcription factor with protective role in leaf rust pathogenesis and AFM imaging of the protein-DNA complex, D. Kumar et al.

Mining, annotation and characterization of stress responsive transcription factor genes ZIM, GRAS and HSF in wheat, Poonam S. and K. Mukhopadhyay

Evidence of Yr36-mediated partial resistance at low temperatures, V. Segovia et al.

Validation of a candidate barley stem rust susceptibility gene determining the recessive nature of rpg4-mediated Ug99 resistance , D. Arora and R. Brueggeman

27.1 Genome-wide association analysis on seedling and adult plant resistance of stripe rust in elite Pacific Northwest spring wheat lines, K. Ando and M. O. Pumphrey

New Sources of Resistance

Wheat-alien chromosome addition lines for stem rust and yellow rust resistances, M. Rahmatov et al.

Inheritance of Ug99 resistance in spring wheat landrace PI 374670, E.M. Babiker et al.

Reaction of Turkish wild and landrace wheat and barley accessions to African Pgt race TTKSK, B. Steffenson et al.

Introggression of resistance to African Pgt races from Sharon goatgrass (Aegilops sharonensis) into wheat, E. Millet et al.

Identification of novel genes for resistance to African Pgt races in Aegilops spp., J. Manisterski et al.

Stem rust resistance in Aegilops spp., P.D. Olivera and Y. Jin

Genetics of resistance to African Pgt races in Sharon goatgrass, B. Steffenson

Stem rust and leaf rust resistances in wild relatives of wheat with D genomes, V.K. Vikas et al.

Sources of resistance to stem rust in durum wheat, A.N. Mishra et al.

Identification of new sources of resistance to wheat rusts, Satish-Kumar et al.

Yield evaluation of wheat lines carrying stem rust resistance genes derived from alien species, I. Dundas et al.

Preliminary evaluation of Ethiopian emmer landraces to wheat rusts and Septoria tritici blotch in southeastern Ethiopia, B. Hundie

Reactions of Turkish wheat landraces to Pgt race TTKTF, K. Akan et al.
Reactions of some Turkish *Aegilops* and *Triticum* materials to *Pgt* race TTKTF, K. Akan et al.

National and Regional Efforts toward Wheat Rust Resistance

Genetic mapping and QTL analysis of leaf rust resistance genes in Australian wheat cultivar ‘Cook’, A. Akhmetova et al.

Breeding for durable rust resistance in Texas hard red winter wheat using synthetic-derived wheat lines, B. Reddy et al.

Resistance to *Pgt* race TTKSF in the wheat cv. Matlabas, Z. Pretorius et al.

Development of wheat lines with complex resistance to rusts, L. Herselman et al.

Stripe (yellow) rust resistant spring bread wheat genotypes for the CWANA region, W. Tadesse et al.

Variation in seedling response to North American *Pgt* and *Pt* races in an inclusive East African bread wheat panel, M. Godwin et al.

Evaluation of bread wheat germplasm from the CGIAR Centers against *Pgt* race Ug99 in 2012, Z. Tadesse

Yield performance and rust reactions of Ethiopian bread wheat genotypes, Y.S. Ishetu et al.

Zakia: A new Ug99-resistant variety for the heat stressed environments of Sudan, I.S.A. Tahir et al.

Resistance of some Turkish bread wheat genotypes to yellow rust and stem rust, L. Çetin et al.

Seedling and adult plant resistance to stripe rust among winter wheat commercial cultivars and advanced breeding lines in Uzbekistan, Z. Ziyaev et al.

Molecular breeding for leaf rust resistance in wheat, A. Kokhmetova et al.

Characterization of Afghan wheat landraces for response to rusts, A. Manickavelu et al.

Stem rust reactions of candidate wheat lines under artificially inoculated and natural conditions in southern Pakistan, K.A. Khanzada et al.

Response of wheat cv. Seher-06 to leaf rust in Pakistan, J.I. Mizra et al.

Wheat cultivation in Bhutan: Prospects and challenges, S. Tshewang and Doe Doe

Genetics of rust resistances in Nepalese wheats, B.N. Mahto et al.

Determining rust resistance genes in Nepalese wheat lines using SSR markers, S. Baidya et al.

Rust resistant wheat varieties released in Bangladesh, N.D.C. Barma et al.

HD-2189: A bread wheat variety undefeated by *Puccinia triticina* for 25 years in India, G.S. Arunkumar et al.

Yield reductions caused by stripe rust in a diverse group of Indian wheat genotypes, R. Tiwari et al.

Screening Indian germplasm for leaf rust resistance, A.L. Bipinraj et al.

Utilization of Australian germplasm for enhancing stripe rust resistance in popular Indian wheat cultivars, R. Chatrath et al.

Marker assisted pyramiding of stem rust resistance genes *Sr24* and *Sr26* in Indian wheat breeding, B.K. Das et al.

Adult plant leaf rust resistance in Indian bread wheat accessions bearing leaf tip necrosis, J Kumar et al.

Assaying stem rust resistance genes in Indian wheat varieties using molecular markers, R. Malik et al.

An accelerated breeding approach to pyramid resistance genes as a means of addressing wheat rust threats in India, M. Sivasamy et al.
70 Exploring untapped variability for stripe rust resistance in indigenous wheat germplasm, C.N. Mishra et al.
71 Identification of slow ruster wheat genotypes for stripe and leaf rusts under artificially inoculated conditions, M.S. Sarahan et al.
72 Evaluation of barley genotypes for stripe rust (Puccinia striiformis f. sp. hordei) resistance in India, R. Selvakumar et al.
73 A need to diversify Lr24-based leaf rust resistance of wheat in central India, T.L. Prakasha et al.
74 Frequency of Ug99 resistant wheat lines derived from segregating populations selected under the Mexican and Mexico-Kenya shuttle breeding schemes, J. Huerta-Espino et al.

Breeding Rust Resistance Durum Wheat
75 Stem rust resistance in durum wheat, P.D. Olivera et al.
76 Breeding for leaf rust resistance in durum wheat in Morocco, N. Nsarellah et al.
77 Preliminary characterization of resistance to stripe rust from six elite durum lines, A. Loladze and K. Ammar
78 Leaf rust resistance in landraces and wild relatives of durum wheat from the Caucasus region, A. Loladze and K. Ammar
79 Characterization of leaf rust resistance of durum wheat lines derived from crosses with wild relatives, A. Loladze et al.
80 Mitigating the threat of leaf rust to durum yield stability in new, Septoria tritici blotch resistant, germplasm in Tunisia, M.S. Gharbi et al.
81 Identification and mapping of markers linked to leaf rust resistance in Indian durum genotype Malvilocal, A.L. Bipinraj et al.

Global Surveillance Tools
82 Wheat rust information resources: Integrated tools and data for improved decision making, D. Hodson et al.
83 FAO Global Wheat Rusts Program strengthens national capacities to manage wheat rusts, F. Dusunceli et al.
84 An SMS network tool for rapid surveillance of wheat rusts through extension offices: A pilot initiative in Turkey, F. Dusunceli et al.
85 A new early-warning system for stripe rust affecting wheat and triticale: Host-pathogen interactions under different environmental conditions, J. Rodriguez-Algaba et al.
86 Inferring the origin and trajectories of recent invasions of wheat yellow rust strains from worldwide population structure, S. Ali et al.
87 Screening for stem rust resistance in East Africa: A global effort to mitigate the threat of Ug99, S. Bhavani et al.

National Surveillance Efforts
88 SSR analysis of herbarium specimens of Puccinia graminis f. sp. tritici in South Africa, B. Visser et al.
89 Variation among Puccinia graminis f. sp. tritici isolates from wheat in South Africa, 2011 and 2012, T.G. Terefe and Z.A. Pretorius
90 The rusts of Secale africanum in South Africa, C.M. Bender et al.
Wheat rusts: Distribution and virulence analysis of stem rust in the major wheat growing regions of Ethiopia in 2012 and 2013, G. Woldeab et al.

Occurrence of wheat rusts in Algeria and strategies to reduce crop losses, A. Benbelkacem and H.J. Braun

The rusts on winter wheat in southeastern Kazakhstan, Y. Dutbaev et al.

Wheat stem rust research in Georgia, Z. Sikharulidze et al.

Wheat rust virulence in southern Russia, G. Volkova et al.

Phenotypic and genotypic analyses of Turkish Pgt samples collected in 2012, M. Newcomb et al.

Epidemics and adult-plant responses of Iranian wheat genotypes to the Yr27-virulent Pst race in 2013, F. Afshari et al.

Puccinia striiformis f. sp. tritici races and their distribution in Syria during 2008 and, S. Kharouf et al.

Physiologic specialization of Puccinia triticina on durum wheat in Syria in 2010, M. Kassem and M. Nachit

Virulence spectra of wheat rusts in Pakistan during 2012-13, A.R. Rattu et al.

Status of stripe rust and virulence patterns of Pst in Pakistan, J.I. Mirza et al.

Current status of Pgt virulence in Pakistan, J.I. Mirza et al.

Surveillance of wheat rusts in Bangladesh, P.K. Malaker et al.

Prevalence and distribution of wheat stripe rust in Jammu and determination of sources of resistance, V. Gupta et al.

Stripe rust of wheat: An Indian puzzle, S.C. Bhardwaj et al.

Virulence analysis of Pst isolates collected from western Canada, H.S. Randhawa et al.

Physiological specialization of Puccinia triticina on wheat in Argentina in 2011, P. Campos

Upgrading knowledge of Chilean hexaploid wheat yield losses caused by stripe rust and leaf rust, R. Madariaga and I. Matus

Barberry Surveillance

Barberry rust survey: Developing tools for diagnosis, analysis and data management, A.F. Justesen et al.

Survey of barberry and associated rust pathogens in Nepal, M. Newcomb et al.

Characterizing Wheat Rusts

EMS mutagenesis of avirulent Puccinia graminis f. sp. tritici urediniospores, G. Singh et al.

Analysis of simple sequence repeats in genic regions of the wheat rust fungi, R. Singh et al.

Analysis of effector proteins from the flax rust and wheat stem rust pathogens, P. Dodds et al.

Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors, D.G.O. Saunders et al.

Next-generation sequencing to characterize Pst races from western Canada, A. Laroche et al.

Identification and characterization of microRNAs and their putative target genes in Puccinia spp., B. Pandey et al.

Characterization of seedling yellow rust resistance in wheat commercial cultivars, landraces and elite genotypes from Syria and Lebanon, R. Al Amil et al.
Accelerated female participation in promotion of rust resistant wheat varieties in the Nepali hills

S. Sharma¹, D.B. Thapa², M.R. Bhatta³, H.K. Manandhar¹, S. Joshi¹, S. Baidya¹, B.N. Mahto¹, C. Manandhar¹, S. Manandhar¹, D. Bhandari¹, N.R. Gautam⁴, S.R. Upadhayay⁴ and A.K. Joshi⁵

E-mail: saralajilohani@yahoo.com

The frequent wheat stripe rust epidemics in the hill regions of Nepal have been attributed to the prolonged cultivation of old varieties such as Nepal 297 and RR21. In the last two decades rust resistant varieties Annapurna 1, Kanti and Pasang Lhamu were released but were not widely adopted due to lack of farmer preference. With a view to enhance genetic diversity for stripe (yellow) rust resistance in combination with resistance to Pgt race Ug99, participatory varietal selection (PVS) programs were extensively launched in 12 districts. Pre-released genotypes were selected by farmers and other stakeholders through co-ordinated interaction, discussion and sustained field visits. Around 1,000 progressive farmers have participated in the PVS program in the last five years. Interestingly, an increased participation of women has occurred. The female participation level in PVS programs in districts such as Lalitpur was around 70%. Similarly, in the middle and high hills of far western areas, there was more than 50% female participation in wheat cultivation through PVS. The key criteria for variety preference by women farmers were taste, soft bread and better straw quality. On the other hand, male farmers preferred varieties with less awns, easy threshing ability, earliness, high yield and rust resistance. Gautam and WK1204 were the most frequently selected varieties in the PVS program and their cultivation has increased by 30% in planting area over the last five years. In the last two years female farmers have shown increased interest in new rust resistant varieties such as Danphe#1, Danphe#2 and Becard#1.
Nepal-CIMMYT collaboration in increasing food security through wheat research and development

D.B. Thapa¹, M.R. Bhatta², S. Sharma³, N.R. Gautam⁴ and A.K. Joshi⁵

¹Agriculture Botany Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, PO Box 1135, Kathmandu, Nepal; ²Genebank, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal; ³Plant Pathology Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal; ⁴National Wheat Research Program, Nepal Agricultural Research Council, Bhairahawa, Rupandehi, Nepal; ⁵CIMMYT, South Asia Regional Office, PO Box 5186, Singha Durbar Plaza, Kathmandu, Nepal

E-mail: thapa.dhruba777@gmail.com

The research partnership between the Nepal Agriculture Research Council (NARC) and CIMMYT has made a significant impact in ensuring food and nutrition security in Nepal through increased wheat production. In the last 50 years, the introduction of semi-dwarf varieties and other co-created innovations in research and development have led to a seven-fold increase in wheat area and a 14-fold increase in production; that is, more than a doubling of productivity. In the process, 34 varieties were released. In the last five years (2005-06 to 2010-11), the area increased from 0.67 to 0.77 m ha, production increased from 1.44 to 1.85 m t and productivity from 2.07 to 2.412 t/ha. Recent NARC-CIMMYT collaboration played an instrumental role in development, release and dissemination of agronomically superior Ug99-resistant varieties Vijay, Gaura and Dhaulagiri in the last three years, and Danphe 1 and Francolin are in the release process. Seed production of resistant varieties for 2012-13 was sufficient to cover 5.4% of the wheat area. Female farmer engagement in setting varietal selection criteria and evaluation through participatory varietal selection (PVS) has enhanced successful identification and deployment of farmer-preferred varieties. This was more successful in hilly areas where seed networking systems and linkages are weaker. PVS conducted at more than 70 sites annually has enhanced genetic diversity. The collaboration led to increased local knowledge of rust resistance genes and their use in breeding and pathogen virulence monitoring. Increased capacity building and an increased awareness of the need for resistant varieties and pre-release seed multiplication by farmers, the seed industry, planners and the national agricultural system has been achieved.
Going beyond component technologies to integrated systems for enhancing the adoption of rust tolerant wheat varieties: Experience of EAAPP in Ethiopia

M. Yami¹, B. Begna¹, B. Girma², T. Fita³, T. Solomon¹, W. Tilahun¹, F. Eticha¹ and A. Badebo⁴

¹Wheat Regional Center of Excellence, Ethiopian Institute of Agricultural Research, PO Box 2003, Addis Ababa, Ethiopia; ²Kulumsa Agricultural Research Centre, EIAR, PO Box 2003, Arsi, Assela, Ethiopia, ³EAAPP Coordination Office, Ministry of Agriculture, PO Box 62347, Addis Ababa, Ethiopia; ⁴East Africa Agricultural Productivity Project, PO Box 2003, Addis Ababa, Ethiopia

E-mail: mesay44@gmail.com

The abnormally extended dry season rainfall in Ethiopia in 2010 created suitable weather for stripe rust development and spread. The epidemic caused considerable crop loss due to the wide use of susceptible wheat varieties Kubsa and Galema. To prevent the devastating effects of stripe rust and other foliar diseases, a total of eight bread wheat and two durum varieties were released by the national wheat research program in 2010 and since. However, farmers continued to be at risk, because seed producers were reluctant to multiply the new varieties as these were not sufficiently popularized but instead focused on multiplication and supply of old varieties. For fast-tracking replacement of susceptible varieties, the Eastern Africa Agricultural Productivity Program (EAAPP) is engaged in demonstration, promotion and popularization of newly released varieties along with recommended production packages in 42 wheat growing districts of Ethiopia by linking the formal and informal seed systems. To measure the level of farmer satisfaction with newly released wheat varieties, a five-point Linkert scale was used on 200 EAAPP beneficiary farmers. The study indicated that the mean productivity from technology increased by 45% compared to the control. The weighted average of perception of the respondents was 4.46. This shows that the beneficiaries were satisfied with the new technologies.
Determinants of adoption of rust resistant improved wheat varieties in the Robe and Digelu Tijo districts of Oromiya region, Ethiopia

T. Solomon¹, A. Bekele², M. Yami¹ and A. Tessema³

¹Kulumssa Agricultural Research Center, PO Box 489, Assela, Ethiopia; ²Melkassa Agricultural Research Center, PO Box 436, Nazereth, Ethiopia; ³Hawassa University, College of Agriculture, PO Box 05, Hawassa, Ethiopia

E-mail: tesyeshi@gmail.com

This study investigated the determinants of adoption of improved wheat varieties in the Robe and Digelu Tijo districts in the Oromiya region. The objectives were to assess factors that affect the adoption and intensity of use of improved wheat varieties in the Arsi zone with specific reference to the Robe and Digelu Tijo districts. One hundred and fifty farmers in the study area were selected and interviewed in 2012. To identify the model that best identifies the determinants of adoption and level of adoption of improved varieties, a model specification test was carried out using the LR test. The LR result preferred the D-H model. The results of the D-H model provided empirical evidence of a positive impact of sex of household head, field day participation, access to all weather roads, and district in enhancing the adoption of improved wheat varieties. With regard to the intensity of use of improved wheat varieties, sex of household heads and access to all weather roads had a significantly negative impact on intensity of use of improved wheat varieties while access to credit, active family force (households with members between the ages 15 and 60), market distance and district had a positive impact on intensity of use of improved wheat varieties. The overall findings of the study emphasized sex of household head, field day participation, access to all weather roads, access to credit, active family force, district and market distance. Hence, policy makers should give emphasis to these variables.