Identification of a Major and Novel QTL Conferring Resistance to Leaf Rust in Wheat

Suraj Sapkota


University of Georgia

Mohamed,Mergoum, Yuanfeng, Hao, Jerry, Johnson, Dan, Bland, James, Buck, John, Youmans, Benzamin, Lopez, Steve, Sutton, Zhenbang, Chen, , , , , , , , , , , ,

    leaf rust, QTL



Leaf rust disease, caused by the fungal pathogen Puccinia tritcina, is the most destructive foliar disease of wheat worldwide. Gene combination of Lr37/Yr17/Sr38 has been used in Georgia (GA) to prevent the loss from leaf rust; however, with the emergence of new virulent races, these genes have lost their effectiveness. 'AGS 2000' and 'Pioneer 26R61' are the most common soft red winter wheat (SRWW) cultivars in Southeastern US, and have been used as good sources of resistance to leaf and stripe rusts, and powdery mildew. To characterize the genetic basic of resistance of AGS 2000, a mapping population of 178 recombinant inbred lines (RIL) has been developed from a cross with Pioneer 26R61. This population was genotyped using a combination of SSR, DArT, and SNP markers, and a total of 2734 markers covering the entire genome were used for the construction of genetic map. Phenotypic evaluation of parents and RIL population was conducted at the seedling stage using a virulent GA leaf rust race. QTL mapping revealed a major QTL on chromosome 2BL, explaining about 20% of total phenotypic variation in AGS 2000. Additionally, a minor QTL was also detected on chromosome 5B. QTL on 2BL was identified as a novel gene, and can be used in marker-assisted selection for leaf rust resistance.