All BGRI Abstracts

Displaying 71 - 80 of 416 records | 8 of 42 pages

Impact of different levels of stem, stripe and leaf rust severity on two grain yield components of wheat in Egypt

BGRI 2018 Poster Abstract
Mohammed Abou-Zeid Wheat Diseases Department Plant Pathology research Institute, Agriculture Research Center.

Improvement of wheat (Triticum aestivum L.) is a major goal of plant breeders and pathologists to ensure food security and self sufficiency. Relationship between different levels of stem, stripe and leaf rust severity on the two grain yield components (1000-kernel weight and plot yield) were studied during 2015/2016 and 2016/2017 seasons at Sids Agricultural Research Station. Different epiphytotic levels of stem, stripe and leaf rust were created using spreader artificial inoculation and spraying the fungicide Sumi-eight. To create different rust severity, one, two, and three sprays were applied at 7 day intervals. Protected control treatment was obtained by spraying the fungicide four times. Correlation coefficient (R<sup>2</sup>) analysis depicted that positive correlation was found between different rust severity levels and yield loss. In 2015/2016 growing season, which stem rust started early, disease severity (%) reached its relatively high percentage (80%) with the highest loss (%) in both 1000 kernel weight (36.3%) and plot weight (37.82%). The effect of stripe rust infection on yield components was lower than those of stem rust and lowest in leaf rust. On the other hand, the lowest loss was observed with 10% of stem, stripe and leaf rust which sprayed three times. During 2016/2017 stripe rust infection caused the highest loss (%) in yield components, under the highest level 80% of severity, on the other hand leaf rust showed low level of loss (%) Compared with the stripe and stem rust.

Tags:

Differences in absorption and distribution of foliarly-applied zinc in maize and wheat by using stable isotope of 70Zn and Zn-responsive fluorescent dye Zinpyr

BGRI 2018 Poster Abstract
Raheela Rehman Sabanci University
Levent Ozturk, Ismail Cakmak

Zinc (Zn) deficiency is an important health problem worldwide, affecting about two billion people, especially children and women. Zinc deficiency related diseases are more prevailing in developing countries because populationa rely on cereals (i.e., wheat, rice and maize) as a staple food which are inherently low in micronutrients. Zinc concentration in cereal grains can be improved by genetic or agronomic biofortification. Optimized applications of soil and foliar Zn fertilizers has been found effective for cereals like wheat and rice but not significantly in maize. Current study focuses to elucidate the physiological reasons behind the poor response of maize to foliar applications compared to wheat. Experiments with stable isotope of Zn (70Zn) revealed the differences in leaf uptake, root and shoot translocation of foliar-applied Zn in wheat and maize. The results suggested that wheat has greater capacity for leaf absorption and translocation of foliarly applied Zn compared to maize. The increased leaf Zn uptake and localization in wheat was confirmed by a visual demonstration using Zn-responsive fluorescent dye Zinpyr and fluoresce microscopy. This study provides valuable information to maximize the uptake and deposition of foliarly applied Zn to cereal grains.

Tags:

Developing rust resistant bread wheat genotypes for warmer areas in India

BGRI 2018 Poster Abstract
Sanjay Kumar Singh ICAR- Indian Institute of Wheat & Barley Research, Karnal-132001, India
Vinod Tiwari, DP Singh, RP Gangwar, GP Singh

The changing climatic conditions are affecting wheat production in major agro-ecological zones in India, namely, north western plains(NWPZ), north eastern plains(NEPZ), central (CZ) and peninsular zone(PZ) where the reproductive phase has to endure higher temperatures. Also, the prevalence and virulence of rust pathotypes and other diseases are affected. To address such challenges, development of wheat for climate resilience was initiated following shuttle breeding approach for incorporating heat stress tolerance as well as resistance to wheat rusts. During 2010-16, a total of 583 elite lines were evaluated against prevalent pathotypes of stripe rust 78S84, 110S119, 110S84 and 46S119; leaf rust 12-2(1R5), 12-5(29R45), 77-2(109R31-1), 77-5(121R63-1), 77-9(121R60-1) and 104-2 (21R55) and stem rust 11(79G31), 40A(62G29), 42(19G35), 122(7G11) and 117-6(37G19) of which 108 promising entries were identified. These lines were evaluated for disease response in multilocational Initial Plant Pathological Screening Nursery (IPPSN) against prevalent races of all three rusts. Based on average coefficient of infection (15.0 ACI), 42 (39%), 104 (96%) and 90(83%) entries were found resistant to different races of stripe, leaf and stem rusts, respectively. Based on performance in multiplication yield trials, 29 entries were contributed in national coordinated evaluation system on Wheat & Barley which resulted in release of four wheat cultivars DBW71(Yr9+27+,Lr26+,Sr2+5+31+), DBW107(Yr9+,Lr26+3+,Sr31+), DBW110(Yr2+, Lr13+10+,Sr13+11+) and DBW93(Yr9+, Lr26+23+, Sr31+) for commercial cultivation in NWPZ, NEPZ, CZ and PZ, respectively. These cultivars are becoming popular among farmers due to their yield advantage, resistance to diseases, tolerance to high temperature and better quality traits. Also, DBW 129 was screened in multiple disease screening nursery (MDSN) and observed resistant to all rusts, leaf blight, powdery mildew, flag smut and shoot fly. The adoption of the newly developed cultivars for deployment of differential genes for resistance would lead to reduction in disease pressure and bring higher profitability to farmers in different agro-ecological zones in India.

Tags:

Genome wide association mapping of resistance to leaf rust disease in wheat

BGRI 2018 Poster Abstract
Mohamed Mergoum The University of Georgia (UGA)
Suraj Sapkota, James Buck, Jerry Johnson, John Youmans

Leaf rust disease, caused by the fungal pathogen Puccinia triticina, is a major biotic constraint of wheat production worldwide. Genetic resistance is the most effective, economic, and environmentally safe method to control and reduce losses caused by this disease. More than 70 leaf rust resistance genes have been identified and mapped to specific chromosomes; however, continuous evolution of new leaf rust races requires constant search for new sources of resistance with novel QTL/genes. The objectives of this study were to identify sources of resistance, and to map genomic loci associated with leaf rust resistance using genome wide association study (GWAS) approach. Phenotypic evaluation of 297 spring wheat genotypes against a prevalent race of leaf rust in Georgia revealed that most of the genotypes were susceptible, and only 24 genotypes were found resistant. Furthermore, GWAS detected 10 markers on chromosomes 2A, 2B, 6A, 7A, and 7B significantly associated with leaf rust resistance. A marker on chromosome 7AS was identified revealing a novel genomic region associated with leaf rust resistance. The new identified sources of resistance and QTL could be used in wheat breeding programs to improve leaf rust resistance.

Tags:

An ABA-induced sugar transporter gene TaSTP1 reinforces wheat susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Baoyu Huai State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling
Lijing Pang, Pu Yuan, Shoujun Hu, Jie Liu, Zhensheng Kang

Pathogens, whatever their types, develop at the expense of the nutrients generated by host and it is largely assumed that classical sources turn into sinks when colonized by pathogens. Sugar appears to be the major carbon and energy source transferred from the host to pathogens. Uptake, exchanges and competition for sugar, at biotrophic interfaces, are controlled by membrane transporters and their regulation patterns are essential in determining the outcome of plant-fungal interactions. However, mechanisms of transport and transporters involved in carbon partitioning between organisms are still poorly understood.
In this study, a wheat sugar transporter protein (STP) gene, TaSTP1, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of TaSTP1 were up-regulated in wheat leaves that were infected by Pst or had experienced exogenous ABA and certain abiotic treatments. Heterologous mutant complementation in Saccharomyces cerevisiae revealed that TaSTP1 transports a broad-spectrum monosaccharides including glucose, fructose, mannose and galactose. Transient expression in Nicotiana benthamiana and Arabidopsis protoplasts suggested that TaSTP1 is localized in plasma membrane. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) validated oligomerization of TaSTP1. Knocking down TaSTP1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31. Hyphal abnormality was significantly observed in VIGS plants. These results suggest that TaSTP1 may directly or indirectly participate in sugar transport in the wheat-Pst interactions and exert influence on suagr supply of Pst.

Tags:

Genetic Improvement in Quality, Grain Yield and Yield Associated Traits of Durum wheat (Triticum turgidum var.durum L.) in Ethiopia

BGRI 2018 Poster Abstract
Mekuria Dejene Ethiopian Institute of Agricultural Research

Information about changes associated with advances in crop breeding is essential for understanding yield-limiting factors and developing new strategies for future breeding programmes. Thirty-six durum wheat varieties released since 1966 were evaluated in three replications of the Randomized Complete Design at Debre Zeit and Akaki, Ethiopia during the 2016 cropping season to estimate the amount of genetic gain made over time in grain yield potential, yield-associated traits and in protein content. Analysis of variance revealed significant differences among varieties for all 16 quantitative traits, protein content and protein harvest in Kg ha-1 at each of the locations. Grain yield varied between 1.66t ha-1 for Arendato released in 1966 to 3.90t ha-1 for Megenagna released in 2012 with mean of 2.952t ha-1 at Debre Zeit. At Akaki yield range was between 2.45 and 5.04t ha-1 with mean of 3.992t ha-1. 25 varieties surpassed Arendato (3.754t ha-1) at this location. In the combined ANOVA significant difference between the varieties was observed only for spike length, spikelets spike-1, grains spikelet, grains spike-1, plant height, days to flowering, thousand grain weight and hectoliter weight. Varieties specifically adapted to only one of the locations, widely adapted varieties and varieties not adapted to any of the locations were identified. Regression analysis revealed that grain yield has increased by 22kg ha-1 year-1 since 1966; an increase of 40.6% over yield in 1966. This was accompanied with a significant decline of 11.4% in spike length, 6.7% in spikelets spike-1, 17.9% in protein content and 31.2% in protein yield ha-1 and a significant increase of 41.1% in grains spikelet-1, 32.9% in number of grains spike-1, 22.3% in thousand grain weight, 17.8% in grain filling period, 23.9% in seed growth rate, 40.1% in grain yield production rate, 7.9% in harvest index.

Tags:

Current work on rusts, blight and blast on wheat in Bangladesh

BGRI 2018 Poster Abstract
Naresh Barma Bangladesh Agricultural Research Institute
Paritosh Malaker, Mostofa Reza, Abdul Hakim, Krishna Roy, Rabiul Islam, Thakur Prashad Tiwari, Pawan Kumar Singh, Arun Kumar Joshi

The major diseases of wheat in Bangladesh are leaf blight and leaf rust. Yellow rust occurs occasionally with sporadic infection in the northern parts whereas stem rust was observed only in 2014. So far the country is free of Pgt race Ug99. Wheat blast, a devastating head disease, was first reported in 2016. Currently, about 65% of the wheat area in Bangladesh is covered by leaf rust resistant varieties and about 30% of the area is covered by Ug99 resistant varieties. Surveillance and monitoring of diseases is conducted regularly. In 2017, 102 sites were surveyed of which 52% had leaf rust infection. The data were uploaded to the Wheat Rust Tool Box. A separate surveillance and monitoring of wheat blast was conducted on 421 farmers? fields in 24 districts. Different levels of blast incidence were recorded in 77 fields. The Wheat Research Centre in Bangladesh works with CIMMYT and BGRI to develop high yielding rust resistant varieties. This includes screening for response to Ug99 at KALRO, Kenya. However, the current major concern of wheat is wheat blast. The popular variety BARI Gom 26 is highly susceptible to this disease and no current cultivar in Bangladesh carries an acceptable level of resistance to blast. During 2016-17, 20 varieties and advanced lines from Bangladesh and 80 from CIMMYT Mexico, were evaluated. One elite breeding line, BAW 1260, showed resistance (<10% severity) in multiple environment tests and is also resistant to leaf blight and stem rust. This line carries the 2NS translocation from Aegilops ventricosa and will be released soon for commercial cultivation. Pre-release seed multiplication is already underway for rapid dissemination. Among recently released wheat varieties BARI Gom 30 and BARI Gom 32 are moderately tolerant to blast and are being promoted for wider adoption by farmers.

Tags:

Race analysis of Puccinia striiformis f.sp. tritici in Iran-2017

BGRI 2018 Poster Abstract
Farzad Afshari Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Stripe rust of wheat, caused by Puccinia striiformis f. sp. trirtici (Pst) is an important disease in many parts of Iran. Over last two decades several epidemics have occurred in Iran causing the breakdown of widely utilized sources of resistance in wheat cultivars. Fifty isolates were collected from different parts of Iran during 2017. Eight isolates of Pst. from 2017 have been processed to date for race analysis. Infection types were assessed on a 0-9 scale 16 and 18 days after inoculation using a scale similar to that described by McNeal et al. (1971). Infection types (ITs) 7 to 9 were regarded as virulent (susceptible) and lower than 7 were avirulent. Pathotypes 102E158A+,Yr27; 6E158A+,Yr27; 102E158A+,Yr27; 166E154A+,Yr27; 38E174A+; 38E158A+,Yr27; 238E190A+,Yr27 and 38E190A+,Yr27 were identified. Pathotype 238E190A+,Yr27+ (from West of Iran) was more aggressive during this study. Plants with Yr1, Yr4, Yr5, Yr10, Yr15, Yr24 and YrSP were resistant to all pathotypes. Pathotypes with virulence on plant with gene/s Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr26, Yr27, Yr32, YrSD, YrSU, YrND and YrA were more common. Seedling tests of Iranian wheat cultivars to race 238E190A+,Yr27+ showed that the new released cultivars that included Parsi, Baharan, Bahar, Pishgam, Zareh, Urom, Maihan, Dena, Haydarei and Shabrang were resistant to the new aggressive race with virulence on plants with Yr27.

Tags:

Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection

BGRI 2018 Poster Abstract
Adnan Riaz The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI)
Naveenkumar,Athiyannan, Sambasivam, Periyannan, Olga, Afanasenko, Olga, Mitrofanova, Gregory, Platz, Elizabeth, Aitken, Rod, Snowdon, Evans, Lagudah, Lee, Hickey, Kai, Voss-Fels, , , , , , , , , ,

Leaf rust (LR) is an important wheat disease and deployment of resistant cultivars is the most viable strategy to minimise yield losses. We evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (VIR), St Petersburg, Russia for LR response and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at the seedling and adult plant growth stages using three prevalent Australian P. triticina pathotypes. GWAS applied to 11 phenotypic data sets identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r2 = 0.7), indicative of a high allelic fixation. Subsequent haplotype analysis for this region found 7 haplotype variants, of which 2 were strongly associated with LR resistance at the seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult-plant stage. Most of the lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.

Tags:

Incidence and severity of rust diseases in Novosibirsk region, Western Siberia, Russia

BGRI 2018 Poster Abstract
Ekaterina Skolotneva The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences
Vyacheslav Piskarev, Irina Leonova, Ekaterina Bukatich, Elena Salina

Stem and leaf rusts affect the winter and spring wheat in the Novosibirsk region. During 2008-2017 leaf rust incidence was generally moderate, from 20 to 40%. A leaf rust outbreak occurred in 2015 when incidence increased up to 80%. Leaf rust severity on the 'Thatcher' NILs ranged from immune or resistant to highly susceptible host response with maximum severity of 90S. Lines carrying genes Lr17, Lr18, Lr24, Lr29, Lr35, Lr37, Lr44, and LrW remained almost free of infection for the whole time of inspection. Genes Lr12, Lr13, Lr28, Lr34, and Lr38 exhibited moderate resistance but they did not provide sufficient level of resistance in favorable conditions. Since race-specific genes Lr24 and Lr29 are still effective in the neighboring Novosibirsk and Omsk regions, they might be recommended for breeding purposes in Western Siberia.
In 2016 stem rust was more prevalent and widespread in the region than ever before. Disease incidence ranged between 4.5 - 60% with high severity up to 80S in six fields from seven observed locations. The 4th ISRTN and varieties carrying Sr31 of West Siberian germplasm were assessed in field trials to monitor the virulence of the local population. There was no virulence to Sr9b, Sr9e, Sr20, Sr28, Sr29, Sr33, Sr39, Sr40, SrWld, Sr2 complex. Possible virulence to Sr6, Sr11, Sr12, Sr13, Sr17, Sr24, Sr25, Sr30, Sr31, Sr35, Sr38, Sr44, Sr57 was observed with low frequency. Entries genotyped for gene Sr31 were scored as MS and S. However, follow up race analysis work is needed to determine the actual stem rust races present and confirm the suspected possible observed virulence on Sr31.

Tags:

Pages