Effect of host vernalisation, temperature and plant growth stage on wheat and triticale susceptibility to Puccinia striiformis

Julian Rodriguez-Algaba


Aarhus University

Chris K. Sørensen, Rodrigo Labouriau, Annemarie Justesen, Mogens Hovmøller



Host vernalisation and temperature strongly affect the susceptibility of winter crops to pathogenic fungi. However, how the interaction of these environmental factors influence host susceptibility to Puccinia striiformis, the yellow (stripe) rust fungus, is poorly understood. An experimental system was developed to examine the effect of vernalisation, temperature regime (standard; 18 day/12 night °C and low; 12 day/6 night °C) and plant growth (seedling and adult plant stages) on changes in susceptibility of agronomically important winter wheat and triticale genotypes to P. striiformis races ('Warrior' and 'Kranich') highly predominant in several European countries. Host genotypes exposed to prolonged periods of low temperature, termed vernalisation, reduced disease susceptibility on specific winter host genotypes, although its effect differed considerably by the temperature regime and the P. striiformis race deployed. The influence of vernalisation on host susceptibility was more apparent at low temperature for the 'Warrior' race and at standard temperature for the 'Kranich' race. Triticale genotypes inoculated with the 'Kranich' race were particularly affected by the influence of vernalisation and temperature regime by displaying a shift towards reduced susceptibility at standard temperature. The effect of plant growth stage, i.e., vernalised seedlings versus adult plants, was most evident for the 'Warrior' race at standard temperature and at low temperature for the 'Kranich' race by revealing a lower infection type at the adult plant stage. The research findings presented here contributed to a better understanding of the role of environmental factors in host susceptibility. This, in fact, will aid in the development of more efficient early-warning systems and disease management strategies to the yellow rust fungus and in the decision making for the deployment of winter wheat and triticale genotypes.